ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:143.50KB ,
资源ID:7282770      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7282770.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【全程复习方略】广东省2013版高中数学-3.3三角函数的图象与性质课时提能演练-理-新人教A版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【全程复习方略】广东省2013版高中数学-3.3三角函数的图象与性质课时提能演练-理-新人教A版.doc

1、【全程复习方略】广东省2013版高中数学 3.3三角函数的图象与性质课时提能演练 理 新人教A版 (45分钟 100分)一、选择题(每小题6分,共36分)1.已知函数f(x)sin(x)(0)的最小正周期为,则该函数的图象()(A)关于直线x对称(B)关于点(,0)对称(C)关于直线x对称(D)关于点(,0)对称2.(2012台州模拟)函数y的最小正周期是()(A)(B)(C)2(D)43.(预测题)同时具有下列性质:“对任意xR,f(x)f(x)恒成立;图象关于直线x对称”的函数可以是()(A)f(x)sin() (B)f(x)sin(2x)(C)f(x)cos(2x) (D)f(x)cos

2、(2x)4.(易错题)函数ytanxsinx|tanxsinx|在区间(,)内的图象是()5.已知函数f(x)sin(2x),若存在a(0,),使得f(xa)f(xa)恒成立,则a的值是()(A) (B) (C) (D)6.已知函数ysinx的定义域为a,b,值域为1,则ba的值不可能是()(A) (B) (C) (D)二、填空题(每小题6分,共18分)7.函数f(x)sinxcosx(x,)的值域是.8.函数ysin(2x)(0)是R上的偶函数,则的值是 .9.(2012汕头模拟)已知函数f(x)cos2(),g(x)sin2x.设xx0是函数yf(x)图象的一条对称轴,则g(x0)的值等于

3、.三、解答题(每小题15分,共30分)10.已知函数f(x)sin(x),其中0,|.(1)若coscossinsin0,求的值;(2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位所对应的函数是偶函数.11.(2012佛山模拟)已知函数f(x)asinxbcosx的图象经过点(,0)和(,1).(1)求实数a和b的值;(2)当x为何值时,f(x)取得最大值.【探究创新】(16分)已知函数f(x)sin2xacos2x(aR,a为常数),且是函数yf(x)的零点.(1)求a的值,并求函数f(

4、x)的最小正周期;(2)若x0,求函数f(x)的值域,并写出f(x)取得最大值时x的值.答案解析1. 【解析】选B.由题意知T,则2,所以f(x)sin(2x),又f()sin()sin0,故图象关于点(,0)对称.2.【解析】选C.ytan.T2.3.【解题指南】根据已知条件求出周期,再把代入并作出判断即可.【解析】选B.由已知得函数的周期是,所以2,再把代入,可知B正确.4.【解析】选D.当x时,tanx0,sinx0,ytanxsinxtanxsinx2tanx0.当x时,tanx0,sinx0,ytanxsinxtanxsinx2sinx0,结合三角函数的图象和性质可知图象为D.5.【

5、解析】选D.因为函数满足f(xa)f(xa),所以函数是周期函数,且周期为2a,2a,所以a.【方法技巧】周期函数的理解(1)周期函数定义中的等式:f(xT)f(x)是定义域内的恒等式,即对定义域内的每个x值都成立,若只是存在个别x满足等式的常数T不是周期.(2)每个周期函数的定义域是一个无限集,其周期有无穷多个,对于周期函数yf(x),T是周期,则kT(kZ,k0)也是周期,但并非所有周期函数都有最小正周期.6.【解题指南】解决此类题目利用数形结合,画出草图,因为知道最小值是1,再根据周期性就可得到ba的可能的值.【解析】选A.画出函数ysinx的草图,分析知ba的取值范围为,.【变式备选】

6、已知函数f(x)Asin(x)(A0,0)满足条件f(x)f(x)0,则的值为()(A)2 (B) (C) (D)【解析】选A.由f(x)f(x)0得f(x)f(x),所以f(x1)f(x),故函数的周期是1,又由1得2.7.【解题指南】先将f(x)化为f(x)Asin(x)的形式,再根据范围求值域.【解析】f(x)sinxcosx2sin(x),又x,所以x,所以1f(x)2.答案:1, 28.【解析】若函数为偶函数,则k(kZ),因为0,所以.答案:9.【解析】由题设知f(x)1cos(x),因为xx0是函数yf(x)图象的一条对称轴,所以x0k(kZ),即2x02k(kZ),所以g(x0

7、)sin2x0sin(2k)(其中kZ).答案:10.【解析】(1)由coscossinsin0得coscossinsin0,即cos()0,又|,.(2)由(1)得,f(x)sin(x),依题意,.又T,故3,f(x)sin(3x).设函数f(x)的图象向左平移m个单位后所对应的函数为g(x)sin3(xm).当且仅当3mk(kZ),即m(kZ)时,g(x)是偶函数.从而,最小正实数m.11.【解析】(1)依题意有:a1,b.(2)由(1)知:f(x)sinxcosx2sin(x).因此,当x2k(kZ),即x2k(kZ)时,f(x)取得最大值2.【探究创新】【解析】(1)由于是函数yf(x)的零点,即x是方程f(x)0的解,从而f()sinacos20,则1a0,解得a2.所以f(x)sin2x2cos2xsin2xcos2x1,则f(x)sin(2x)1,所以函数f(x)的最小正周期为.(2)由x0,得2x,则sin(2x),1,则1sin(2x),2sin(2x)11,函数f(x)的值域为2,1.当2x2k(kZ),即xk时,f(x)有最大值,又x0,故k0时,x,f(x)有最大值1.- 5 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服