ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:174.50KB ,
资源ID:7046958      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7046958.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(陈湘平(利用柯西不等式巧证竞赛题).doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

陈湘平(利用柯西不等式巧证竞赛题).doc

1、利用柯西不等式巧证竞赛题           广东珠海市第四中学(519015)陈湘平 柯西不等式是数学上非常著名,非常重要的不等式之一.利用此不等式,对于准确快捷地解决一些竞赛题,可以起到以简驭繁,事半功倍的效果. 柯西不等式:设ai,bi∈R(i=1,2,……,n),则 ≥() 2 当且仅当== … =时等号成立. 证明:作关于x的二次函数f(x)=( )x2+2()x+, 若=0,则a1=a2= … =an=0,原不等式显然成立;若≠0,则f(x)=(a1x-b1)2+(a2x-b2) 2+…+(anx-bn) 2≥0且

2、>0 ∴(2)2-4≤0 ∵≥()2, 当且仅当== … =时等号成立. 柯西不等式结构严谨,形式易记,应用方便,下举例说明,以供参考. 一、利用柯西不等式巧证分式不等式. 例1 (1978年广东数学竞赛题)设a、b、c∈R+且a+b+c=1,证明: ≥9. 证明:∵a、b、c∈R+ ∴不妨构造两组实数;; 依柯西不等式有()(a+b+c)≥(1+1+1)2, ∵a+b+c=1, ∴ ≥9. 例2 (第二届友谊杯竞赛题)设a、b、c∈R+,求证:≥. 证明:∵a、b、c∈R+ ∴不妨构造两组实数;; 依柯西不等式有()(b+c+a+c+a+b)≥(a+b+c

3、)2, 即≥. 注:例1和例2都是巧妙地构造两组实数后,直接利用柯西不等式就可以得到所要的结果. 例3 (1978第20届IMO题)设a1,a2,…,an是互不相同的正整数,则对于一切的自然数n,都有≥. 证明:∵a1,a2,…,an是互不相同的正整数, ∴不妨构造两组实数;; 依柯西不等式有()()≥()2 ∵a1,a2,…,an是互不相同的正整数, ∴()()≥()()≥()2 ∴≥. 例4 (第十九届莫斯科数学竞赛题)设x,y∈R且满足,求证:≥. 证明:∵x,y∈R且满足, ∴1-x2≥0,1-y2≥0 ∴不妨构造两组实数;,

4、 由柯西不等式有()(1- x2 + 1- y2)≥(1+1) 2 即()[2-(x2+y2)] ≥22 ∵x2 + y2≥2xy, ∴()(2-2xy) ≥(()[2-(x2+y2)] ≥22 ∴≥. 注:例3和例4除了利用柯西不等式外,还应用了不等式证明的其它一些技巧,如放缩法等. 二、利用柯西不等式巧求最值问题. 例5 (1999年日本IMO队选拔赛题)已知x、y、z∈R+且x+y+z=1,求的最小值. 解:∵x、y、z∈R+, ∴不妨构造两组实数;; 依柯西不等式有()(x+y+z)≥(1+2+3)2 ∵x+y+z=1, ∴≥36,当且仅当x:y:z=

5、1:2:3时等号成立. ∴当x=,y=,z=时,有最小值36. 例6 (第七届美国竞赛题)已知a、b、c、d、e为实数,满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值. 解:由题意易知a+b+c+d=8-e, a2+b2+c2+d2=16-e2, 于是可构造两组实数a,b,c,d;1,1,1,1; 由柯西不等式得(a2+b2+c2+d2)(1+1+1+1)≥(a+b+c+d)2, 即16-e2)×4≥(8-e) 2 解此不等式得e≤,当a=b=c=d时取等号. ∴当且仅当a=b=c=d=时,e有最大值. 可见,运用柯西不等式来证(解)题的

6、关键就是根据题目的特点,巧妙地构造两组实数,需要注意的是你所构造的实数组的合理性,如分母不能为0,平方根非负性等等,读完本文,相信以下问题不再是难题: (1)(1991年亚太地区竞赛题)若a、b、c∈R+(i=1,2,…n)且=,求证: ≥(a1+a2+…+an) . (2)(1984年全国高中联赛题)设x1,x2,…,xn∈R+,证明:≥x1+x2+…+xn.. (3)(《数学通报》1994(11)问题925)已知ai∈R+ (i=1,2,…,n)且=S.求证:≥. (4)(1998湖南省高中数学联赛题)已知x、y∈R+且,则x+y的最小值是_______. 参考文献: [1]吴前元,滕耀云.分式不等式的证明方法与技巧.中等数学,2000(4). [2]林崇春.利用≥巧证竞赛题.中学数学研究,2002(8). 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服