ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:68.50KB ,
资源ID:7030472      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7030472.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(有理数的乘法第三课时.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

有理数的乘法第三课时.doc

1、1.4.1 有理数的乘法(2) 第二课时 三维目标 一、知识与技能 (1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算. (2)能利用计算器进行有理数的乘法运算. 二、过程与方法 经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力. 三、情感态度与价值观 培养学生主动探索,积极思考的学习兴趣. 教学重、难点与关键 1.重点:能用法则进行多个因数的乘积运算. 2.难点:积的符号的确定. 3.关键:让学生观察实例,发现规律. 教具准备

2、 投影仪. 四、 教学过程 1.请叙述有理数的乘法法则. 2.计算:(1)│-5│(-2); (2)(-)×(-9); (3)0×(-99.9). 五、新授 1.多个有理数相乘,可以把它们按顺序依次相乘. 例如:计算:1×(-1)×(-7)=×-×(-7)=-2×(-7)=14; 又如:(+2)×[(-78)×]=(+2)×(-26)=-52. 我们知道计算有理数的乘法,关键是确定积的符号. 观察:下列各式的积是正的还是负的? (1)2×3×4×(-5); (2)2×3×4×(-

3、4)×(-5); (3)2×(-3)×(-4)×(-5);(4)(-2)×(-3)×(-4)×(-5). 易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关. 教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数. 2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积. 例3:计算: (1)(-3)

4、××(-)×(-); (2)(-5)×6×(-)×. 解:(1)(负因数的个数为奇数3,因此积为负) 原式=-3××× =- (2)(负因数的个数是偶数2,所以积为正) 原式=5×6××=6 观察下式,你能看出它的结果吗?如果能,说明理由? 7.8×(-5.1)×0×(-19.6) 归纳:几个数相乘,如果其中有因数为0,积等于0,这是因为任何数同0相乘,都得0. 六、课堂练习 课本第32页练习. 思路点拨:先观察题目是什么类型,然后按有理数的乘法法则进行,(1)、(2)

5、题都是多个不是0的数相乘,要先确定积的符号,再求积的绝对值,(3)题是几个数相乘,且其中有一个因数为0,所以直接得结果0. 七、课堂小结 本节课我们通过观察实例,归纳出几个不等于零的数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正;几个不等于零的数相乘,先确定积的符号,再把各个数的绝对值相乘;几个数相乘,有一个因数是0,积就为零. 八、作业布置 1.课本第38页习题1.4第7题第(1)、(2)、(3)题. 九、板书设计: 1.4.1 有理数的乘法(2) 第二课时 1、几个不是0的数相乘,积的符号

6、由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数. 2、随堂练习。 3、小结。 4、课后作业。 十、课后反思 1.4.1 有理数的乘法(3) 第三课时 三维目标 一、知识与技能 (1)能用乘法的三个运算律来进行乘法的简化运算. (2)能进行乘法及加减法的混合运算. 二、过程与方法 经历探索有理数乘法运算律的过程,发展学生观察、归纳、验证等能力. 三、情感态度与价值观 鼓励学生积极思考,并与同伴进行交流的思想,体会运算律对简化运算的作用.

7、 教学重、难点与关键 1.重点:能运用乘法运算律进行乘法运算. 2.难点:灵活运用运算律进行乘法运算. 3.关键:掌握乘法运算律以及运算法则. 四、教学过程 1.有理数的乘法法则是什么? 2.在小学里学过正有理数乘法有哪些运算律? 五、新授 在小学里,数的乘法满足交换律,例如8×3=3×8. 还满足结合律,例如(4×6)×3=4×(6×3). 引入负数后,乘法交换律、结合律是否还成立? 规定有理数乘法法则后,显然乘法交换律、结合律仍然成立. 例如:5×(-6)=-30,(-6)×5

8、30 即 5×(-6)=(-6)×5 [3×(-4)]×(-5)=(-12)×(-5)=60 3×[(-4)×(-5)]=3×(+20)=60 即 [3×(-4)]×(-5)=3×[(-4)×(-5)] 大家可以再任意取一些数,试一试. 一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 乘法交换律:ab=ba. 说明:a×b可以写成a·b或ab.当用字母表示乘法时“×”号可写成“·”或省略. 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 乘法结合律:(ab)c=a(

9、bc). 在小学里,乘法还满足分配律,例如6×(+)=6×+6×. 任意选取三个有理数(至少有一个负数)分别填入下列□、○和△内,并比较两个运算结果,你能发现什么? 所以:-5×[+(-2)]=-5×+(-5)×(-2) 这就是说,有理数的乘法仍满足分配律. 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 分配律:a(b+c)=ab+ac. 以上表示乘法运算律的式子中,a、b、c表示任意有理数. 乘法的运算律与加法运算律类似,也可以推广到多个数的情况. 在代数学的研究中,运算律是

10、很重要的内容.在计算时运用运算律,往往能使计算简便. 例4:用两种方法计算(+-)×12. 解法1:按运算顺序,先计算小括号内的数. (+-)×12 =()×12 =-×12=-1 解法2:运用分配律. (+-)×12 =×12+×12-×12 =3+2-6=-1 思考:比较以上两种方法,哪种解法运算量小? 显然解法2运算量小,它不需要通分. 六、课堂练习 1.课本第33页练习. (1)-8500,运用结合律,先算(-25)×(-4). (2)1

11、5,运用乘法交换律和结合律. (3)25,运用分配律. 七、课堂小结 运算律的运用十分灵活,在有理数的混合运算中,各种运算律常常是混合运用的,这就要求我们要有较好的掌握运算律进行计算的能力,在平时的练习中,要观察题目特点,寻找最佳解题方法,这样往往可以减少计算量. 八、作业布置 1.课本第39页,习题1.4第7题第(1)、(2)、(3)小题. 九、板书设计: 1.4.1 有理数的乘法(3) 第三课时 1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等. 2、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 3、随堂练习。 4、小结。 5、课后作业。 十、课后反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服