ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:1.22MB ,
资源ID:6870113      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6870113.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(大学物理作业答案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

大学物理作业答案.doc

1、18大学物理作业答案第一章作业解答1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算0 s时刻到4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算4 s 时质点的速度;(5)计算0s 到4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) (2)将,代入上式即有 (3) (4) 则 (5) (

2、6) 这说明该点只有方向的加速度,且为恒量。1-5 质点沿轴运动,其加速度和位置的关系为 2+6,的单位为,的单位为 m. 质点在0处,速度为10,试求质点在任何坐标处的速度值解: 分离变量: 两边积分得由题知,时,, 1-6 已知一质点作直线运动,其加速度为 4+3 ,开始运动时,5 m, =0,求该质点在10s 时的速度和位置 解: 分离变量,得 积分,得 由题知,, ,故 又因为 分离变量, 积分得 由题知 , ,故 所以时1-7 一质点沿半径为1 m 的圆周运动,运动方程为 =2+3,式中以弧度计,以秒计,求:(1) 2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45角

3、时,其角位移是多少? 解: (1)时, (2)当加速度方向与半径成角时,有即 亦即 则解得 于是角位移为第二章作业解答2-9 一质量为的质点在平面上运动,其位置矢量为求质点的动量及0 到时间内质点所受的合力的冲量和质点动量的改变量解: 质点的动量为将和分别代入上式,得, ,则动量的增量亦即质点所受外力的冲量为2-12 设(1) 当一质点从原点运动到时,求所作的功(2)如果质点到处时需0.6s,试求平均功率(3)如果质点的质量为1kg,试求动能的变化解: (1)由题知,为恒力, (2) (3)由动能定理,2-26 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴转动设大小圆柱体的半径分别为和

4、,质量分别为和绕在两柱体上的细绳分别与物体和相连,和则挂在圆柱体的两侧,如题2-26图所示设0.20m, 0.10m,4 kg,10 kg,2 kg,且开始时,离地均为2m求:(1)柱体转动时的角加速度;(2)两侧细绳的张力解: 设,和分别为,和柱体的加速度及角加速度,方向如图(如图b)题2-26(a)图 题2-26(b)图(1) ,和柱体的运动方程如下: 式中 而 由上式求得 (2)由式由式2-27 计算题2-27图所示系统中物体的加速度设滑轮为质量均匀分布的圆柱体,其质量为,半径为,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设50kg,200 kg,M15 kg, 0.1 m解

5、: 分别以,滑轮为研究对象,受力图如图(b)所示对,运用牛顿定律,有 对滑轮运用转动定律,有 又, 联立以上4个方程,得题2-27(a)图 题2-27(b)图题2-28图2-28 如题2-28图所示,一匀质细杆质量为,长为,可绕过一端的水平轴自由转动,杆于水平位置由静止开始摆下求:(1)初始时刻的角加速度;(2)杆转过角时的角速度.解: (1)由转动定律,有 (2)由机械能守恒定律,有 第四章作业解答4-3 如题4-3图所示,物体的质量为,放在光滑斜面上,斜面与水平面的夹角为,弹簧的倔强系数为,滑轮的转动惯量为,半径为先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振

6、动周期 题4-3图解:分别以物体和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为轴正向,则当重物偏离原点的坐标为时,有 式中,为静平衡时弹簧之伸长量,联立以上三式,有令 则有故知该系统是作简谐振动,其振动周期为4-4 质量为的小球与轻弹簧组成的系统,按的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)与两个时刻的位相差;解:(1)设谐振动的标准方程为,则知:又 (2) 当时,有,即 (3) 4-5 一个沿轴作简谐振动的弹簧振子,振幅为,周期为

7、,其振动方程用余弦函数表示如果时质点的状态分别是:(1);(2)过平衡位置向正向运动;(3)过处向负向运动;(4)过处向正向运动试求出相应的初位相,并写出振动方程解:因为 将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相故有4-6 一质量为的物体作谐振动,振幅为,周期为,当时位移为求:(1)时,物体所在的位置及此时所受力的大小和方向;(2)由起始位置运动到处所需的最短时间;(3)在处物体的总能量解:由题已知 又,时,故振动方程为 (1)将代入得方向指向坐标原点,即沿轴负向(2)由题知,时,时 (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为4-8 图为两个谐

8、振动的曲线,试分别写出其谐振动方程题4-8图解:由题4-8图(a),时,即 故 由题4-8图(b)时,时,又 故 第五章作业解答5-8 已知波源在原点的一列平面简谐波,波动方程为=cos(),其中, 为正值恒量求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为处一点的振动方程;(3)任一时刻,在波的传播方向上相距为的两点的位相差 解: (1)已知平面简谐波的波动方程 ()将上式与波动方程的标准形式比较,可知:波振幅为,频率,波长,波速,波动周期(2)将代入波动方程即可得到该点的振动方程(3)因任一时刻同一波线上两点之间的位相差为 将,及代入上式,即得5-9 沿绳子传播的

9、平面简谐波的波动方程为=0.05cos(10),式中,以米计,以秒计求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求=0.2m处质点在=1s时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在=1.25s时刻到达哪一点? 解: (1)将题给方程与标准式相比,得振幅,频率,波长,波速(2)绳上各点的最大振速,最大加速度分别为(3) m处的振动比原点落后的时间为故,时的位相就是原点(),在时的位相,即 设这一位相所代表的运动状态在s时刻到达点,则5-14 如题5-14图所示,有一平面简谐波在空间传播,已知P点的振动方程为= cos()(1)分别就图

10、中给出的两种坐标写出其波动方程;(2)写出距点距离为的点的振动方程解: (1)如题5-14图(a),则波动方程为如图(b),则波动方程为题5-14图 (2) 如题5-14图(a),则点的振动方程为 如题5-14图(b),则点的振动方程为5-19 如题5-19图所示,设点发出的平面横波沿方向传播,它在点的振动方程为;点发出的平面横波沿方向传播,它在点的振动方程为,本题中以m计,以s计设0.4m,0.5 m,波速=0.2ms-1,求:(1)两波传到P点时的位相差;(2)当这两列波的振动方向相同时,处合振动的振幅;*(3)当这两列波的振动方向互相垂直时,处合振动的振幅 解: (1) 题5-19图(2

11、)点是相长干涉,且振动方向相同,所以(3)若两振动方向垂直,又两分振动位相差为,这时合振动轨迹是通过,象限的直线,所以合振幅为5-19 如题5-19图所示,设点发出的平面横波沿方向传播,它在点的振动方程为;点发出的平面横波沿方向传播,它在点的振动方程为,本题中以m计,以s计设0.4m,0.5 m,波速=0.2ms-1,求:(1)两波传到P点时的位相差;(2)当这两列波的振动方向相同时,处合振动的振幅;*(3)当这两列波的振动方向互相垂直时,处合振动的振幅 解: (1) 题5-19图(2)点是相长干涉,且振动方向相同,所以(3)若两振动方向垂直,又两分振动位相差为,这时合振动轨迹是通过,象限的直

12、线,所以合振幅为第八章作业解答8-2 两小球的质量都是,都用长为的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2,如题8-2图所示设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量解: 如图示解得 8-6 长=15.0cm的直导线AB上均匀地分布着线密度=5.0x10-9Cm-1的正电荷试求:(1)在导线的延长线上与导线B端相距=5.0cm处点的场强;(2)在导线的垂直平分线上与导线中点相距=5.0cm 处点的场强解: 如图所示(1)在带电直线上取线元,其上电量在点产生场强为用,, 代入得 方向水平向右(2)同理 方向如图所示由于对称性,即只有分量, 以, ,代入得,方向沿轴正向

13、8-10 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2Cm-3求距球心5cm,8cm ,12cm 各点的场强解: 高斯定理,当时,,时, , 方向沿半径向外cm时, 沿半径向外.8-16 如图所示,在,两点处放有电量分别为+,-的点电荷,间距离为2,现将另一正试验点电荷从点经过半圆弧移到点,求移动过程中电场力作的功解: 如图示 8-17 如图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和半圆环的半径都等于试求环中心点处的场强和电势解: (1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取则产生点如图,由于对称性,点场强沿轴负方向(2) 电荷在点产生电势,

14、以同理产生 半圆环产生 第九章作业解答9-7 如题9-7图所示,、为长直导线,为圆心在点的一段圆弧形导线,其半径为若通以电流,求点的磁感应强度解:如题9-7图所示,点磁场由、三部分电流产生其中产生 产生,方向垂直向里 段产生 ,方向向里,方向向里9-8 在真空中,有两根互相平行的无限长直导线和,相距0.1m,通有方向相反的电流,=20A,=10A,如题9-8图所示,两点与导线在同一平面内这两点与导线的距离均为5.0cm试求,两点处的磁感应强度,以及磁感应强度为零的点的位置题9-8图解:如题9-8图所示,方向垂直纸面向里(2)设在外侧距离为处则 解得 9-12 两平行长直导线相距=40cm,每根

15、导线载有电流=20A,如题9-12图所示求:(1)两导线所在平面内与该两导线等距的一点处的磁感应强度;(2)通过图中斜线所示面积的磁通量(=10cm,=25cm) 解:(1) T方向纸面向外(2)取面元9-20 如题9-20图所示,在长直导线内通以电流=20A,在矩形线圈中通有电流=10 A,与线圈共面,且,都与平行已知=9.0cm,=20.0cm,=1.0 cm,求:(1)导线的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受合力和合力矩 解:(1)方向垂直向左,大小 同理方向垂直向右,大小 方向垂直向上,大小为 方向垂直向下,大小为(2)合力方向向左,大小为合力矩 线圈与导线共面 第十章作

16、业解答10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈两导线中的电流方向相反、大小相等,且电流以的变化率增大,求:(1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势解: 以向外磁通为正则(1) (2) 10-7 如题10-7图所示,长直导线通以电流=5A,在其右方放一长方形线圈,两者共面线圈长=0.06m,宽=0.04m,线圈以速度=0.03ms-1垂直于直线平移远离求:=0.05m时线圈中感应电动势的大小和方向题10-7图 解: 、运动速度方向与磁力线平行,不产生感应电动势 产生电动势产生电动势回路中总感应电动势 方向沿顺时针10-11 如题10-11图所示,长度为的金属杆位于两无限长直导线所在平面的正中间,并以速度平行于两直导线运动两直导线通以大小相等、方向相反的电流,两导线相距2试求:金属杆两端的电势差及其方向解:在金属杆上取距左边直导线为,则 实际上感应电动势方向从,即从图中从右向左,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服