1、
《6.2 一次函数》导学案
扬州市江都区大桥镇花荡中学 丁兆华
教学目标:
1.知道一次函数和正比例函数的概念,以及它们之间的关系。
2.能根据所给条件写出简单的一次函数表达式。
3.通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力,体会利用数学解决实际问题的乐趣。
创设情境
双休日,小明和朋友们从江都家里出发开车去天目湖游玩,在普通公路上行驶了30km后,由于赶时间,小明等人上高速以100km/h的速度匀速行驶了x小时.
1.在高速公路上行驶了y千米,那么y与x的函数表达为 。
2.此时小明离家s千米,那么s与
2、x的函数表达式为 。
3.行驶到途中,他们去加油站加油,油价为8.2元/L,加油mL,付费Q元,那么Q与m的函数表达式为 。
若给汽车加油的加油枪流量为25L/min,如果加油前油箱里有6L油,加油tmin,油箱里的油量为VL, 那么V与t的函数表达式为 。
4.到达天目湖后,小明去买票,票价为120元/位,进去n人付费F元,那么F与n的函数表达式为 。
5.小明买完票后,找不到朋友,准备打电话,已知收费标准为月租费9元(含来电显示),
3、本地网通话费为每分钟0.2元.
x(分钟)
1
2
3
4
5
应缴费用y(元)
(1) 计算通话时间分别为1分钟、2分钟、3分钟、4分钟、5分钟时的费用,并填入下表:
(2)此时y与x之间的函数表达式为 。
概念归纳
一次函数:
正比例函数:
概念辨析
1.下列说法不正确的是( )
A.一次函数不一定是正比例函数。 B.不是一次函数就一定不是正比例函数。
C.正比例函数是特殊的一次函数。 D.不是正比例函数就一定不是一次函数。
2.给出下列函
4、数指出其中的一次函数、正比例函数,若为一次函数指出k、b的值,若为正比例函数,指出k的值:
(1) y=- x - 4 (2) y= (3)y=2-3x (4)
(5) x+y=0 (6) (7)y+2=2(x+1)
一次函数:____________
正比例函数:_____________
例题解析
例1.(1)当m满足什么条件时函数y=(m-1)x(m为常数)是正比例函数?
(2)当m满足什么条件函数 (m为常数)是一次函数
5、
(3)当m满足什么条件时函数 (m为常数)是一次函数?
(4)已知函数 ,当m取什么值时, y是x的一次函数?当m取什么值时,y是x的正比例函数?
例2.用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数:
(1)正方形面积S随边长x变化而变化;_______
(2)正方形周长C随边长x变化而变化;________
(3)长方形的长为常量a时,面积S随宽x变化而变化;__________
(4)某产品单件的成本为100元,广告投入1600元,则总成本y(元)随销售数量x(件)变化而变化;_____________
(5)某运输公司需要运送的土石方总量为200立方米,运输公司完成运送任务所需的时间t随平均每天的工作量m变化而变化。____________
一次函数:___________________(填写序号)
正比例函数:__________________
3