ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:791.50KB ,
资源ID:6685300      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6685300.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高三数学第一次诊断性测试试题-文-新人教B版.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三数学第一次诊断性测试试题-文-新人教B版.doc

1、山东省实验中学2013届高三第一次诊断性测试数学(文)试题 说明:本试卷分第I卷(选择题)和第II卷(非选择题)共两卷其中第l卷共60分,第II卷共90分,两卷合计I50分答题时间为120分钟第1卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1如果命题 “(p或q)”为假命题,则Ap,q均为真命题Bp,q均为假命题 Cp,q中至少有一个为真命题 D p, q中至多有一个为真命题【答案】C【解析】命题“(p或q)”为假命题,则p或q为真命题,所以p,q中至少有一个为真命题,选C.2下列函数图象中,正确的是【答案】C

2、【解析】A中幂函数中而直线中截距,不对应。B中幂函数中而直线中截距,不对应。D中对数函数中,而直线中截距,不对应,选C.3不等式的解集是 A(一,-2)U(7,+co) B2,7 C D 7,2【答案】C【解析】由得,即,所以,选C.4已知向量 A3B2 Cl Dl【答案】A【解析】因为垂直,所以有,即,所以,解得,选A.5已知倾斜角为的直线与直线x -2y十2=0平行,则tan 2的值 ABCD【答案】B【解析】直线的斜率为,即直线的斜率为,所以,选B.6在各项均为正数的等比数列中,则 A4 B6C8D【答案】C【解析】在等比数列中,所以,选C.7在ABC中,内角A、B、C的对边分别为a、b

3、、c,且,则ABC是( )A钝角三角形 B直角三角形C锐角三角形 D等边三角形【答案】A【解析】由得,所以,所以,即三角形为钝角三角形,选A.8将函数的图象向左平移个单位后,得到函数的图象,则等于ABCD【答案】D【解析】将函数的图象向左平移个单位后,得到函数的图象,即将向右平移吗,得到,所以,所以,又,定义当时,选D.9设x、y满足 则A有最小值2,最大值3B有最小值2,无最大值C有最大值3,无最大值D既无最小值,也无最大值【答案】B【解析】做出可行域如图(阴影部分)。由得,做直线,平移直线由图可知当直线经过点C(2,0)时,直线的截距最小,此时z最小为2,没有最大值,选B.10已知双曲线的

4、两条渐近线均与相切,则该双曲线离心率等于ABCD【答案】A【解析】圆的标准方程为,所以圆心坐标为,半径,双曲线的渐近线为,不妨取,即,因为渐近线与圆相切,所以圆心到直线的距离,即,所以,即,所以,选A.11设函数定义在实数集R上,且当时=,则有 ABCD 【答案】C【解析】由可知函数关于直线对称,所以,且当时,函数单调递增,所以,即,即选C.12已知点O为ABC内一点,且则AOB、AOC、BOC的面积之比等于A9:4:1B1:4:9C3:2:1D1:2:3【答案】C【解析】,延长到,使,延长到,使,连结,取的中点,则所以三点共线且为三角形的重心,则可以证明。在AOB中,B为OB边中点,所以,在

5、AOC中,C为OC边近O端三等分点,所以。在BOC中,连BC,B为OB边中点,所以,在BOC中,C为OC边近O端三等分点,所以,因为,所以AOB: AOC: BOC面积之比为,选C.第卷(非选择题 共90分) 注意事项:1用钢笔或圆珠笔直接答在试题卷上,考试结束后将答题卡和第II卷一并交上 2答题前将密封线内的项目填写清楚,密封线内答题无效。二、填空题:(本大题共有4小题,每小题4分,共计16分)13若函数 ,则= 。【答案】3【解析】因为,所以。14在ABC中,角A,B,C的对边为a,b,c,若,则角A= 。【答案】或【解析】由正弦定理可知,即,所以,因为,所以,所以或。15已知点P是抛物线

6、上的动点,点P在y轴上的射影是M,点A 的坐标是(4,a),则当时,的最小值是 。【答案】【解析】当时,所以,即,因为,所以点A在抛物线的外侧,延长PM交直线,由抛物线的定义可知,当,三点共线时,最小,此时为,又焦点坐标为,所以,即的最小值为,所以的最小值为。16数列满足表示前n项之积,则= 。【答案】【解析】由得,所以,所以是以3为周期的周期数列,且,又,所以。三、解答题:(本大题共有6个小题,共74分,解答应写出文字说明、演算步骤或证明过程)17(本小题满分12分)已知集合(1)若求实数m的值;(2)设集合为R,若,求实数m的取值范围。18(本小题满分12分)设函数(1)求函数的单调减区间

7、;(2)若,求函数的值域;19(本小题满分12分)已知是公比大于1的等经数列,是函数的两个零点(1)求数列的通项公式;(2)若数列满足,求n的最小值。20(本小题满分12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为当年产量不足80千件时,(万元);当年产量不小于80千件时(万元),每件商品售价为万元,通过市场分析,该厂生产的商品能全部售完。(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21(本小题满分13分)已知椭圆的离心率为,短轴一个端到右焦点的距离为。(1)求椭圆C的方程:(2)设直线与椭圆C交于A、B两点,坐标原点O到直线的距离为,求AOB面积的最大值。22(本小题满分13分)已知。(1)若a=0时,求函数在点(1,)处的切线方程;(2)若函数在1,2上是减函数,求实数a的取值范围;(3)令是否存在实数a,当是自然对数的底)时,函数的最小值是3,若存在,求出a的值;若不存在,说明理由。- 12 -用心 爱心 专心

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服