ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:56KB ,
资源ID:6668904      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6668904.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(充分必要条件教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

充分必要条件教案.doc

1、1.2.1 充分条件与必要条件(第1课时)教案 授课人:孙凤姣教学目标一:知识目标1使学生理解充分条件、必要条件的概念;2能正确判断是否是充分条件或必要条件;二:能力目标1通过对充分条件和必要条件的研究,使学生掌握有关的逻辑知识,以保证推理的合理性和论证的严密性;2通过引导学生观察、归纳,培养学生的观察能力和归纳能力;三:情感目标1.通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受;2.通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。教学重难点重点:充分条件

2、、必要条件的概念;难点:充分条件、必要条件的判断;教学过程一:复习引入:复习:命题的概念及命题的常见形式。 命题的概念:一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。命题的常见形式:“若p,则q”,我们把这种形式中的p的叫做命题的条件,q叫做命题的结论。【设计意图】通过命题概念的复习,重点强调条件与结论,为新课学习做必要的准备和铺垫.举例: (1)若两条直线平行,则内错角相等; (2) 若x3, 则x5; “若p,则q”为真,可以将它表示为;“若p,则q”为假,可以将它表示为;【设计意图】命题有真有假,通过

3、对真假两种情况的新的表述方式的引入,意在顺利实现由“已有的知识结构”转入“新知构建”的过程.二:新知建构通过与学生互动,构造出“若p,则q”形式的命题,并使其为真命题,即:学生举例:(通过分析学生所举的例子,引入充分和必要条件的定义)命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件定义:如果命题“若p,则q”为真命题,即p q,那么我们就说p是q的充分条件;q是p 【设计意图】学生举例子,让学生积极参与,提高学生学习热情,有利于学生对充分条件和必要条件概念的理解。例1

4、:下列“若p,则q”形式的命题中,哪些命题中的p是q的充分条件? (1)若x=1 ,则x2-4x+3=0; (2)若f(x)=x,则f(x)在上为增函数; (3)若xa2+b2, 则x2ab;(教师引导学生体验:问题的实质是判断命题是否为真)解:命题(1)(2)(3)都是真命题。所以,命题(1)(2)(3)中的p是q的充分条件。问题:同学们,对于命题(1)(2)(3),我们可不可以回答q是p的必要条件呢?答:对于命题(1)(2)(3),可以回答q是p的必要条件【设计意图】通过实例分析,将新知(充分条件、必要条件的概念)的构建过程转化为已有知识(命题真假的判断)的应用过程.三、巩固新知例2:判断

5、下列问题中,p是q的充分条件吗?(1)p: x=y, q:x2=y2.(2)p:两个三角形全等, q:这两个三角形的面积相等;(3)p:ab, q:acbc ;解:因为在问题(1)和问题(2)中都有。所以,在问题(1)和问题(2)中,p是q的充分条件。问题:像在(3)问题中p与q的关系应如何描述?引导学生得出:若有,称p不是q的充分条件,或称p是q的非充分条件;【设计意图】概念的否定是概念理解的重要方面,本例意在让学生在直观理解的基础上给出“充分条件”和“必要条件”的否定形式.以帮助学生全面认识和理解概念。例3:判断下列各组问题中,q是p的必要条件吗?(1)p:a=0, q: ab=0 ;(2

6、)p:直线和是异面直线, q:和不相交;(3)p:四边形对角线相等 q:四边形是矩形 ;解:因为在问题(1)和问题(2)中都有。所以,在问题(1)和(2)中,q是p的必要条件。问题:像在(3)问题中p与q的关系应如何描述?引导学生得出:若有,称q不是p的必要条件,或称q是p的非必要条件;小结: 充分条件与必要条件判断的关键:(1)认清条件与结论;(2)考察或的真假。练习:回答例3中q是p的充分条件吗?【设计意图】本例的设计和应用主要目的有:(1)强调条件和结论之间的推出关系,即推出箭头的方向性;(2)体会“充分条件”和“必要条件”的不同表述方式;(3)让学生初步体会充分条件与必要条件的四种不同类型,为下节课提前准备。四、能力提升例4、用“充分条件”或“必要条件”填空:(1)是为正数的_.(2)_答案:(1)充分条件;(2)必要条件。五、课堂小结师生共同回顾本节课的教学过程,小结如下内容:、充分条件与必要条件的概念;、充分条件与必要条件判断的关键;六、作业课本第10页练习4;第12页A组1(1)(2)、2 (1)(2);上练习本4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服