ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:154.59KB ,
资源ID:6668545      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6668545.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(单调性与最大(最小)值.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

单调性与最大(最小)值.docx

1、1.3.2 单调性与最大(最小)值【教材分析】最值问题是生产、科学研究和日常生活中常遇到的一类特殊的数学问题,是高中数学的一个重点,它涉及到高中数学知识的各个方面,解决这类问题往往需要综合运用各种技能,灵活选择合理的解题途径.本节课利用单调性求函数的最值,目的是让学生知道学习函数的单调性是为了更好地研究函数.利用单调性不仅仅确定函数的值域、最值,更重要的是在实际应用中求解利润、费用的最大与最小,用料、用时的最少,流量、销量的最大,选取的方法最多、最少等问题.【教学目标】1.理解并掌握函数最大(最小)值的概念及其几何意义,并能利用函数图象及函数单调性求函数的最大(最小)值.2.在求函数最大(最小

2、)值中,提高分析问题、创造地解决问题的能力,渗透数形结合的数学思想.【教学重难点】教学重点:理解函数最大(最小)值.教学难点:利用函数的单调性求函数最大(最小)值.【教学设计建议】一、导入新课1、生活中,有很多的函数变化的模型.比如某段时间的股市变化图和某市一天24小时内的气温变化图等,分别说出股票综合指数和气温随时间变化的特点,如相应图象在什么时候递增或递减,有没有最大(最小)值等.2、前面我们学习了函数的单调性,知道了在函数定义域的某个区间上函数值的变化与自变量增大之间的关系.从函数图象的角度很容易直观的知道函数图象的最高点(或最低点),如何从解析式(函数值)的角度认识函数的最大(最小)值

3、呢?【设计意图:根据生活中的实际例子认识函数图象的变化特征,复习函数的单调性,引出函数的最大(最小)值,并使学生分别从函数图象的角度和从解析式的角度刻画函数的最大(最小)值,激发学生探究函数最大(最小)值的概念及其几何意义的兴趣.】二、探索新知(一)画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? (二)观察上述三个函数的图象,如何用数学符号解释:相应函数的图象有最高点或者最低点?函数图象最高点的纵坐标是所有函数值中的最大值,即函数的最大值.函数图象最低点的纵坐标是所有函数值中的最小值,即函数的最小值.函数图象可能只有最高点,函数有最大值,不存在最低点,函数无最小值

4、;函数图象也可能只有最低点,函数有最小值,不存在最高点,函数无最大值;也可能函数最大(最小)值都有,或者都无等等.【设计意图:通过画函数的图象,特别是区间内函数的图象,先具体感知函数图象的最高点与最低点的情况,再思考用数学符号来解释或表达函数图象的最高点与最低点,形成思维冲突,最后师生一起交流解决.】(三)归纳新知1、函数最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M. 那么,我们称M是函数y=f(x)的最大值,记为ymaxf(x0).2、思考并类比函数的最大值的定义,给出函数最小值的定义一般

5、地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)=M. 那么,我们称M是函数y=f(x)的最小值,记为yminf(x0).【设计意图:在画和观查函数图象、用数学符号来解释或表达函数图象的最高点与最低点的基础上,归纳出函数最大值的定义及其数学符号的表达.继续引导学生思考、类比,自己归纳出函数的最小值的定义及其数学符号的表达.】三、反思提升(一)函数最大(最小)值的定义及其几何意义(二)函数最大(最小)值与函数定义域及值域的关系.(1)函数的定义域为开区间或闭区间对函数最大(最小)值的影响(2)函数不一定有最大(最小)值

6、(3)函数的最大(最小)值是唯一的,但其对应的自变量的值不一定是唯一的.(三)数学方法与思想函数最大(最小)值与函数图象及其单调性的关系中充分体现数形结合的思想,函数最大(最小)值的定义中体现类比的方法,分类讨论的方法.【设计意图:经历问题引入和新知探究后,师生对函数的最大(最小)值的定义及其几何意义有了初步认识,在此基础上进行探究过程和运用到的数学思想方法进行反思提升,强调函数最大(最小)值与函数图象、函数单调性、函数定义域和函数值域的内在关系.】四、反馈例练(一)基础例练例1 “菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花在距地面高度h m与时间t s的之间

7、的关系为h(t)=4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1 m)?解:作出函数h(t)=4.9t2+14.7t+18的图象.显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h(t)=4.9t2+14.7t+18,我们有:当t=1.5时,函数有最大值,h=29.于是,烟花冲出后1.5 s是它爆裂的最佳时刻,这时距地面的高度约为29 m.【例2】 求函数y=在区间2,6上的最大值和最小值.分析:由函数y=(x2,6)的图象可知,函数y=在区间2,6上递

8、减.所以,函数y=在区间2,6的两个端点上分别取得最大值和最小值.解:设x1、x2是区间2,6上的任意两个实数,且x1x2,则f(x1)f(x2)=.由2x1x26,得x2x10,(x11)(x21)0,f(x1)f(x2)0,即f(x1)f(x2).所以,函数y=是区间2,6上的减函数.因此,函数y=在区间2,6的两个端点上分别取得最大(最小)值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.(二)巩固例练例1:求下列函数的最值(1);(2).例2:已知函数,(1)证明当0x1时,函数f(x)是减函数;当x1时,函数f(x)是增函数.(2)求函数的最小值.分析:(

9、1)利用定义法证明函数的单调性;(2)应用函数的单调性得函数的最小值.(1)解:任取x1、x2(0,+)且x1x2,则f(x1)-f(x2)=()-()=(x1-x2)+=,x1x2,x1x20.当0x1x21时,x1x2-10,f(x1)-f(x2)0.f(x1)f(x2),即当0x0, f(x1)-f(x2)0.f(x1)f(x2),即当x1时, 函数f(x)是增函数.(2)由(1)得当x=1时,函数取最小值.又f(1)=2,则函数取最小值是2.点评:本题主要考查函数的单调性和最值.定义法证明函数的单调性的步骤:作差、判号、结论;三个步骤缺一不可.利用函数的单调性求函数的最值的步骤:先判断

10、函数的单调性,再利用其单调性求最值;当然对于简单的函数,也可以画出其函数图象,依据函数最值的几何意义,借助图象写出最值.【设计意图:先安排教材上的两个例题,师生一起例练,可以先让学生思考练习,老师适当点拨讲评,然后安排两个巩固例练,以二次函数的背景,简单的含参数的二次函数动区间和动轴的最大最小值问题,以及再一次巩固“双钩”函数的单调性证明,然后利用单调性求函数的最大最小值.】五、课后作业 1、教科书P32 5、P39 A 5、B 1、22、校本教辅资料相应练习【教学设计感悟】本节课看似简单,但为了达到本节课的教学目标,突出重点,突破难点.在探索概念阶段,让学生经历从直观到抽象、从特殊到一般、从感性到理性的知过程,完成对函数最大(最小)值定义的认识,使得学生对概念的认识不断深入.在应用概念阶段,通过对证明过程的分析,帮助学生掌握用函数图象和函数单调性求函数最值的方法和步骤,并进行适当巩固与拓。这样的教学设计基于新课程理念,学生在深刻体验的基础上,有独立的思考和师生的思维碰撞,然后归纳新知新法。这种教学不是传统教学中教师一味的演绎传授知识,学生被动接受性学习,而是体现数学知识与方法学习的归纳思想,学生更多的是体验性学习。 6 / 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服