ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:13.88KB ,
资源ID:6648626      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6648626.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(探索分式方程的解法.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

探索分式方程的解法.docx

1、活动1思考1.分式方程的主要特点是什么?2.通过分析分式方程的特点,找出与其他方程不同之处.3.结合方程的特点,探索如何解分式方程?教师提出问题 ,学生思考、讨论;师生共同得出结论:分式方程的特征:分母中含有未知数.这是与前面我们学习的整式方程的最大区别点.(整式方程的未知数不在分母中.)在探讨分式方程的解法时,可联系一元一次方程的解法.如:解方程解:去分母,方程两边同乘以分母的最小公倍数6,得:去括号,得:移项,得:合并同类项,得:系数化为1,得:由上述解法,我们自然会想到通过去分母实现把分式方程转化为整式方程.去分母是将分式方程转化成整式方程的关键步骤.解方程:去分母,方程两边同时乘以各分

2、母的最简公分母得解得:检验:将代入原方程中,左边右边,因此是分式方程的解.由此可知:江水的流速为5千米/时.归纳:解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法.活动2解方程:教师出示例题,学生动手操作,思考,然后分组交流.教师进行评价,提出质疑,然后进行说明强调.解:去分母,在方程两边同时乘以最简公分母,得整式方程解得:.师 是原方程的解吗?生 将代入原分式方程检验,发现这时分母和的值都为0,相应的分式无意义,所以.师对,因此虽是整式方程的解,但不是原方程的解,实际上,这个分式方程无解.活动3思考:在上面两个分式方程

3、中,为什么去分母后所得整式方程的解就是的解,而去分母后所得整式方程的解却不是的解呢?学生思考,分母讨论,发表自己的见解.通过讨论总结出问题的答案.活动4问题1:在把分式方程转化为整式方程的过程中会产生增根:那么是不是就不要这样的解呢?采用什么样的方法补救?问题2:怎么检验较简单呢?还需要将整式方程的解分别代入原方程的左、右两边吗?教师提出问题,学生讨论、回答.问题1的解答:还是要把分式方程转化为整式方程来解,解出整式方程的解后可用检验的方法看是不是原方程的解.问题2的解答.不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的解代入最简公分母.若使最简公分母为零,则是原方程的增根,若使最简公分母不为零,则是原方程的解.是增根,必舍去.一般地,说明原方程无解.归纳:一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0.因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,是增根,舍去.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服