ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:180.88KB ,
资源ID:6638047      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6638047.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一元二次方程的根与系数的关系-(2).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一元二次方程的根与系数的关系-(2).doc

1、一元二次方程的根与系数的关系教学目标:1、 知识技能:掌握一元二次方程根和系数的关系,能不解方程求出一元二次方程的两根和与两根积。能利用一元二次方程根与系数的关系来判断已知两数是否是原方程的根,能灵活解决一些简单的有关一元二次方程的问题。2过程与方法:经过小组讨论和从特殊到一般的数学认知过程的体会。3情感态度价值观:利用韦达定理渗透爱国主义精神,激发学生发现问题,提高学生解决问题 的能力。教学重点:一元二次方程根与系数的关系教学难点:韦达定理的论证教学过程:一、复习 1、一元二次方程的一般式? (板书) , 2、一元二次方程有实数根的条件是什么?( 3、0 ,即0,=0,0 根的情况如何? 反

2、过来,若方程有两个不相等的实数根,说明怎么样等? 4、一元二次方程的求根公式二、引入 由求根公式可知,一元二次方程的根由系数、确定,换句话就是说根与系数有关系,今天我们将进一步来学习并发现一元二次方程的根与系数到底还有没有其他关系。思考填表(幻灯)解出下列各方程的两根和,并计算和的值。方程两个根两根之和两根之积 +三、新授 师:谁能发现两根和、两根积与系数的关系? (两根和由一次项系数除以二次项系数所得的商的相反数得到;而两根和 是由常数项除以二次项系数所得)(板书)若,(假设成立) 则, 1、论证韦达定理 师:刚才列举了部分方程发现两根和、两根积与系数有这样的关系,那么是不 是所有的一元二次

3、方程根与系数都有关系呢?(板书) 证明:当0时,由求根根式得:, 当=0时, 即 师:假设成立,这就是一元二次方程根与系数的关系,也称韦达定理,因为是 法国数学家韦达最先发现的。 2、出示例题 (幻灯片)1. 不解方程,求下列方程的两个根的和与积: 2.已知方程的一个根是2,求它的另一根及k的值.3.设、是方程的两实根,则+=_,=_,=_.4. 已知一元二次方程的两根是-1、3,则b=_c=_.5. 运用根与系数的关系求一个一元二次方程,使它的两个根是:、.3、巩固练习1、已知一元二次方程的两根为、,则_2、关于的一元二次方程的两个实数根分别为1和2,则_,_3、一元二次方程的两实数根相等,

4、则的值为( )A B或 C D或4、已知方程的两个根为、,求的值.5、关于的方程的两根同为负数,则( )A且 B且 C且 D且6、若关于的一元二次方程的两个实数根分别是,且满足.则的值为( ) A、1或 B、1 C、 D、不存在(注意:的值不仅须满足,更须在一元二次方程有根的大前提下才有意义,即的值必须使得才可以.)7、已知、是方程的两实数根,求的值.8、已知关于的方程的一个根是另一个根的2倍,求的值.9、已知,是关于的方程的两个实数根(1)求,的值;(2)若,是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值四、小结 今天我们学习了一元二次方程

5、根与系数的关系,刚才通过填空题我们小结了一下,知道这两个关系我们可以用来求两根和、两根积,而且可以验算所求的根是否正确,更重要的是利用韦达定理可以简捷地解决许多有关一元二次方程的问题。五、作业 教材16页练习题、17页第7题教学设计:为了能让学生更好的掌握一元二次方程根和系数的关系,能不解方程求出一元二次方程的两根和与两根积,故在设计教案时前一段引入部分通过实例,这样能让学生有一个感性的认识。能利用一元二次方程根与系数的关系来判断已知两数是否是原方程的根,能灵活解决一些简单的有关一元二次方程的问题。利用韦达定理渗透爱国主义精神,激发学生发现问题,提高学生解决问题 的能力教学反思:1、 学生对于利用根与系数的关系来解决一些有关一元二次方程的问题还不够 熟练,思路不清。 2、韦达定理导入时,充分挖掘,调动学生的探究精神。 3、两根和、两根积有小部分同学有些混淆。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服