ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:752KB ,
资源ID:657908      下载积分:11 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/657908.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高考数学坐标系与参数方程专项练习含答案.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考数学坐标系与参数方程专项练习含答案.doc

1、坐标系与参数方程专项练习一、知识梳理1极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为:(1),(2)2参数方程(t为参数)化为普通方程的常用方法(1)代入法/加减法消参(2)借助三角恒等式sin2cos21(为参数)消参3直角坐标方程,极坐标方程和参数方程的转化关系极坐标方程(,)直角坐标方程(普通方程)(x,y)参数方程(t为参数)二、练习专项【题型1】极坐标方程直角坐标方程参数方程直角坐标方程1(2023全国卷,文科23,10分)在直线坐标系xOy中,曲线C1的参数方程为 (为参数)以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,

2、曲线C2的极坐标方程为sin()2()写出C1的普通方程和C2的直角坐标方程;()设点P在C1上,点Q在C2上,求PQ的最小值及此时P的直角坐标解:()由消去参数得1分(此处为消参的计算过程,可省略)变形得两边平方,得,得y21C1的普通方程为y212分sin()2(sincoscossin)23分(sincos)2sincos2sincos44分cosx,sinyxy45分()由题意,可设点P的直角坐标为6分C2是直线的最小值即为P到C2的距离的最小值8分当且仅当时,取得最小值,最小值为9分此时P的直角坐标为10分2(2023全国卷,文/理23,10分)已知曲线C1:(t为参数),C2:(为

3、参数)()化C1,C2的方程为普通方程,并说明它们分别表达什么曲线;()若C1上的点P相应的参数为t,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值解:()由C1:消去参数t得1分(此处为消参的计算过程,可省略)变形得两边平方,得,得(x4)2(y3)21C1的普通方程为(x4)2(y3)212分C1为圆心是(4,3),半径是1的圆由C2:消去参数得1分(此处为消参的计算过程,可省略)变形得两边平方,得,得1C2的普通方程为12分C2为焦点在x轴上的椭圆()当时,故为直线M到的距离从而当时,取得最小值【题型2】直角坐标方程极坐标方程直角坐标方程参数方程3(2023全国卷,文

4、科23,10分)在直角坐标系xOy中,圆C的方程为(x6)2y225()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|求l的斜率解:()由圆C的方程可得1分x212x36y225x2y212x1102分把x2y22,xcos代入上式得3分212cos1104分圆C的极坐标方程为212cos1105分()在()中建立的极坐标系中,直线l的极坐标方程为(R)由A,B所相应的极径分别为1,28分将l的极坐标方程代入C的极坐标方程得212cos1107分于是8分由|AB|得9分l的斜率为或10分4(2023全国卷,文

5、/理23,10分)在直角坐标系xOy中,直线C1:x2,圆C2:(x1)2(y2)21,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系()求C1,C2的极坐标方程;()若直线C3的极坐标方程为(R),设C2与C3的交点为M,N,求C2MN的面积解:()把xcos代入C1:x2得cos21分C1的极坐标方程为cos22分由C2:(x1)2(y2)21得(x22x1)(y24y4)1x2y22x4y141x2y22x4y403分把2x2y2,xcos,ysin代入上式得4分C2的极坐标方程为22cos4sin405分()将代入22cos4sin40,得23406分解得12,27分故12,即|MN

6、|8分由于C2的半径为1C2MN的面积为10分5(2023全国卷,文/理23,10分)已知曲线C:,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程;()过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值解:()曲线C:1又sin2cos21cos,sinx2cos,y3sin曲线C的参数方程为(为参数)由直线l:消去参数t得(此处为消参的计算过程,可省略)由得tx2把代入,得y22(x2)整理得2xy60直线l的普通方程为2xy60()曲线C上任意一点P(2cos,3sin)到l的距离为d|4cos3sin6|则|PA|5sin()6|,其中为锐

7、角,且tan当sin()1时,|PA|取得最大值,最大值为当sin()1时,|PA|取得最小值,最小值为6(2023全国卷,文/理23,10分)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos,0,()求C的参数方程;()设点D在C上,C在D处的切线与直线l:yx2垂直,根据()中你得到的参数方程,拟定D的坐标解:()2cos22cos把x2y22,xcos代入上式得x2y22xC的普通方程为(x1)2y21(0y1)半圆C的圆心为(1,0),半径为1可得C的参数方程为(t为参数,0t)()设D(1cost,sint)由()知C是以G(1,0)

8、为圆心,1为半径的上半圆C在点D处的切线与l垂直直线GD与l的斜率相同tant,t故D的直角坐标为,即【题型3】极坐标方程参数方程7(2023全国卷,文/理23,10分)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0)在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:4cos()说明C1是哪一种曲线,并将C1的方程化为极坐标方程;()直线C3的极坐标方程为0,其中0满足tan02,若曲线C1与C2的公共点都在C3上,求a解:()解法一:C1是圆的方程1分由消去参数t得2分(此处为消参的计算过程,可省略)移项,得两边平方,得即,得x2(y1)2a2cos2ta2sin2tx

9、2(y1)2a2(cos2tsin2t)x2(y1)2a2整理得3分把代入上式得4分的极坐标方程为5分()由C2:4cos得两边同乘得24cos2x2y2,cosx6分即7分C3:化为普通方程为8分由题意:和的公共方程所在直线即为得:,即为9分10分8(2023全国卷,文/理23,10分)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2sin()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)解:()将消去参数t得C1的普通方程为(x4)2(y5)225即C1:x2y28x10y160将代入上式得28cos

10、10sin160C1的极坐标方程为28cos10sin160()C2的极坐标方程为2sinC2的普通方程为x2y22y0由(此处为解方程的过程,可省略),得8x8y160整理,得y2x把代入,得x2(2x)22(2x)0整理,得x2x0(特别注意,x是未知数,不能约去的)提取x,得x(x1)0x0或x10解得x0或x1把x0代入,得y2把x1代入,得y1解得或C1与C2交点的直角坐标分别为(0,2),(1,1)对于点(0,2)有:2,对于点(1,1)有:,tan1,C1与C2交点的极坐标分别为(2,),(,)【题型4】其它题型:求交点坐标,求点的坐标,求轨迹方程等9(2023全国卷,文/理23

11、,10分)在直角坐标系xOy中,曲线C1:(t为参数,t0),其中0在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:2sin,C3:2cos()求C2与C3交点的直角坐标;()若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值解:()C2:2sin22sin把2x2y2,ysin代入上式得曲线C2的直角坐标方程为x2y22y01分C3:2cos22cos把2x2y2,xcos代入上式得曲线C3的直角坐标方程为x2y22x02分联立得3分(此处为解方程的过程,可省略),得2y2x0整理,得yx把代入,得x23x22x0整理,得2x2x0(特别注意,x是未知数,不能约去的)提取

12、x,得x(2x)0x0或2x0解得x0或x把x0代入,得y0把x代入,得y解得或4分C2与C3交点的直角坐标为(0,0)和5分()曲线C1的极坐标方程为(R,0),其中0因此A的极坐标为(2sin,),B的极坐标为(2cos,)|AB|2sin2cos|4当时,|AB|取得最大值,最大值为410(2023全国卷,文/理23,10分)已知动点P,Q都在曲线C:(t为参数)上,相应参数分别为t与t2(02),M为PQ的中点()求M的轨迹的参数方程;()将M到坐标原点的距离d表达为的函数,并判断M的轨迹是否过坐标原点解:()动点P,Q都在曲线C:(t为参数)上P(2cos,2sin),Q(2cos2

13、,2sin2)M为PQ的中点xMcoscos2yMsinsin2M(coscos2,sinsin2)M的轨迹的参数方程为(为参数,02)()M点到坐标原点的距离d(02)当时,d0,故M的轨迹过坐标原点11(2023全国卷,文/理23,10分)已知曲线C1的参数方程是(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是2正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针顺序排列,点A的极坐标为(2,)()求点A,B,C,D的直角坐标;()设P为C1上任意一点,求|PA|2|PB|2|PC|2|PD|2的取值范围解:()点A的极坐标为点B的极坐标为点C的极坐

14、标为点D的极坐标为xA1,yAxB2cos,yB2sin1xC2cos1,yC2sinxD2cos,yD2sin1即A(1,),B(,1),C(1,),D(,1)()设P(2cos,3sin),令S|PA|2|PB|2|PC|2|PD|2则S16cos236sin2163220sin20sin21S的取值范围是32,5212(2023全国卷,文/理23,10分)在直角坐标系xOy中,曲线C1的参数方程为(为参数),M是C1上的动点,P点满足2,P点的轨迹为曲线C2()求C2的方程;()在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|

15、AB|解:()设P(x,y),则由条件知M(,)由于M点在C1上即从而C2的参数方程为(为参数)()曲线C1的极坐标方程为4sin曲线C2的极坐标方程为8sin射线与C1的交点A的极径为14sin射线与C2的交点B的极径为28sin|AB|21|213(2023全国卷,文/理23,10分)已知直线C1:(t为参数),圆C2:(为参数)()当时,求C1与C2的交点坐标;()过坐标原点O做C1的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线解:()当时C1的普通方程为C2的普通方程为联立方程组解得C1与C2的交点为(1,0),()C1的普通方程为.A点坐标为,故当变化时,P点轨迹的参数方程为(为参数)P点轨迹的普通方程为故P点是圆心为,半径为的圆

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服