1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,本资料仅供参考,不能作为科学依据。谢谢。本资料仅供参考,不能作为科学依据。谢谢您,等差数列通项公式,第1页,等差数列相关概念,观察数列,(1),4,5,6,7,8,9,10.,(2),1,4,7,10,13,16,,(3),7x,3x,-x,-5x,-9x,,(4),2,0,-2,-4,-6,,(5),5,5,5,5,5,5,,(6),0,0,0,0,0,,假如一个数列从第2项起,每一项与它前一项差等于同一个,常数,(,指与n无关数,),这个数列就叫做,等差数列,,这个,常数,叫做等差数列,公差,,,公差,
2、通惯用字母,d,表示。,以上6个数列公差分别为,公差 d=1,递增数列,公差 d=3,递增数列,公差 d=-4x,公差 d=-2,递减数列,公差 d=0,非零,常数列,公差 d=0,零,常数列,因为x正负性不确定,所以该数列增减性尚不能确定。,定义:,第2页,等差数列通项公式,假如一个数列,是等差数列,它公差是d,那么,,,,,由此可知,等差数列 通项公式为,第3页,等差数列图象1,(1)数列:,-2,0,2,4,6,8,10,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,当d0时,这是关于n一个一次函数。,第4页,等差数列图象2,(2)数列:,7,
3、4,1,-2,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,第5页,等差数列图象3,(1)数列:,4,4,4,4,4,4,4,,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,第6页,等差数列例题1-2,例1 求等差数列8,5,2,第20项。,解:,例2 等差数列-5,-9,-13,第几项是 401?,解:,所以,设,解得,答:这个数列第100项是-401.,第7页,1.求等差数列3,7,11,第4,7,10项;,2.求等差数列10,8,6,第20项;,3.求等差数列2,9,16,第n+1项;,4.,等差数列,
4、a,n,中,若,a,10,=32,,a,15,=47,求,a,n,.,5.,等差数列,a,n,中,若,a,1,+,a,4,+,a,7,=39,a,2,+,a,5,+,a,8,=33,求,a,3,+,a,6,+,a,9,.,练 习,第8页,例3 梯子最高一级宽33cm,最低一级宽110cm,中间还有10级.计算中间各级宽.,解:,用 表示题中等差数列,由已知条件,有,即 110=33+11d,解得 d=7,所以,,,答:梯子中间各级宽从上到下依次是,40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm.,第9页,300 500,1.等差数列,a,n
5、,前三项依次为,a,-6,-3,a,-5,-10,a,-1,,则,a,等于(),A,.1,B,.-1,C,.-,D.,A,2.在数列,a,n,中,a,1,=1,,a,n,=,a,n+,1,+4,则,a,10,=,.,(-3,a,-5)-(,a,-6,)=(-10,a,-1)-(-3,a,-5),提醒:,提醒:,d=a,n+,1,-,a,n,=4,3,.,在等差数列,a,n,中,a,1,=83,,a,4,=98,则这个数列有,多少项在300到500之间?,-35,d=,5,提醒:,a,n,=78+5,n,n,=45,46,84,40,第10页,推广后通项公式,(,n-m,),d,【说明】求公差公
6、式相当于,.,两点连线斜率公式,例4,在等差数列,a,n,中,(1)若,a,1,+,a,4,+,a,7,=39,a,2,+,a,5,+,a,8,=,33,求,a,3,+,a,6,+,a,9,.,d=,2,a,101,=154,d=,-1,a,p+q,=,0,d=,4,n,=72,第11页,等差中项,观察以下两个数之间,插入一个什么数后者三个数就会成为一个等差数列:,(1)2,4 (2)-1,5,(3)-12,0 (4)0,0,3,2,-6,0,假如在a与b中间插入一个数,A,,使a,,A,,b成等差数列,那么,A,叫做,a,与,b等差中项,。,第12页,等差中项,即,a,、,b,算术平均数.,
7、中点坐标公式,2,b,=,a+c,a,a+d,a+2d,或,a-d,a,a+d,例5,(1)已知,a,,,b,,,c,成等差数列,求证:,ab,-,c,2,,,ca,-,b,2,,,bc,-,a,2,也成等差数列;,(2),三数成等差数列,它们和为,12,,首尾二数积为,12,,求此三数.,第13页,等差数列基本性质,:,(1)在等差数列,a,n,中,若,m+n=p+q,,则,.,a,m,+,a,n,=,a,p,+,a,q,【说明】上面命题逆命题,;,上面命题中等式两边有,项,,如,a,1,+,a,2,=,a,3,?,是不一定成立,相同数目,例6,在等差数列,a,n,中,(1),a,6,+,a,9,+,a,12,+,a,15,=20,则,a,1,+,a,20,=,;,(2),a,3,+,a,11,=10,则,a,6,+,a,7,+,a,8,=,;,(3)已知,a,4,+,a,5,+,a,6,+,a,7,=56,,a,4,a,7,=187,求,a,14,及公差,d,.,第14页,上面性质概括为:在有穷等差数列中,到首末两端等距离两项,和相等.即有,练习:,(1)首项为-24等差数列从第10项开始为正数,则公差d取,值范围是,(3)已知a,b,c倒数依次成等差数列,且a,b,c互不相等,则,等于,第15页,