ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:111.50KB ,
资源ID:6420854      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6420854.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(单调性 doc.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

单调性 doc.doc

1、1.3.1 函数的单调性 教材分析 函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用. 课时分配 本节内容用1课时的时间完成,主要讲解函数的单调性定义及证明方法步骤 教学目标 重点: 函数单调性的概念与判断 难点:利用概念证明或判断函数的单调性 知识点:函数单调性证明的一般步骤. 能力点:通过函数图像的升

2、降探寻函数的单调性定义,总结证明的一般步骤。 教育点:通过对函数单调性定义的探究,培养观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力,体会探究的乐趣,激发学生的学习热情. 考试点:用定义证明函数的单调性 易错易混点:证明函数的单调性时, 学生一般在步骤上容易出错. 拓展点:讨论函数f(x)=(a>0)在x∈(-1,1)上的单调性 教具准备 多媒体课件和三角板 课堂模式 学案导学 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: y x 1 -1 1 -1 y x 1 -1 1 -1 y

3、 x 1 -1 1 -1 随x的增大,y的值有什么变化? 能否看出函数的最大、最小值? y x 1 -1 1 -1 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律: 1.f(x) = x 从左至右图象上升还是下降 ______? 在区间 ____________ 上,随着x的增 大,f(x)的值随着 ________ 。 y x 1 -1 1 -1 2.f(x) = -2x+1 从左至右图象上升还是下降 ______? 在区间 ____________ 上,随着x的增

4、 大,f(x)的值随着 ________。 3.f(x) = x2 在区间 ____________ 上,f(x)的值随 着x的增大而 ________ 。 y x 1 -1 1 -1 在区间 ____________ 上,f(x)的值随 着x的增大而 ________ 。 学习过程: (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

5、活动) ______________________________________________________________________________ ______________________________________________________________________________ 2.函数的单调性定义 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤: 利用定义证明函数f(x)在给定的区间D上的单调性的一般步

6、骤: 任取x1,x2∈D,且x1

7、函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? A2. 求证:函数y=在区间(1,+∞)上为单调减函数。 六 达标训练: A1.证明函数f(x)=-3x+2在R上是减函数。 B2. 写出f(x)=x2-4x+5的单调递增区间,并证明。 C3. 讨论函数y=x2-2(2a+1)x+3在[-2,2]上的单调性。 课堂小结 函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步: 取 值 → 作 差

8、 → 变 形 → 定 号 → 下结论 布置作业 1.教材P39 第二题; 2.书面作业 必做题:求函数y=x+的单调区间 选做题:1. 讨论函数f(x)=(a>0)在x∈(-1,1)上的单调性. 2. 定义在R上的函数y=f(x), f(0)≠0,当x>0时, f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)·f(b). (1)证明:f(0)=1; (2)证明:对任意的x∈R,恒有f(x)>0; (3)证明:f(x)是R上的增函数; (4)若f(x)·f(2x-x2)>1,求x的取值范围. [设计意图]设计作业1,2,是引导学生先复习,再作

9、业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用单调性定义证明单调函数,进一步巩固证明的一般步骤 七、教后反思 1. 函数的单调区间一般指“最大”区间,学生如果只回答其子区间,应给予纠正。 2. 如何让学生理解函数单调性中:“对任意两个变量…”的“任意”的意义仍是值得斟酌的。能否让学生来举例,让学生讨论来展开研究? 3.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析. 八、板书设计 1.3.1 函数的单调性 1. 单调增函数定义; 2. 单调减函数定义 3. 证明 单调函数的一般步骤; (1) 取值 (2) 作差 (3) 变形 (4) 定号 (5) 下结论 薛城舜耕中学 高一 种衍义

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服