ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:218KB ,
资源ID:6362352      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6362352.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【立体设计】2012高考数学-3.2-利用导数判断函数的单调性课后限时作业-理(通用版).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【立体设计】2012高考数学-3.2-利用导数判断函数的单调性课后限时作业-理(通用版).doc

1、2012高考立体设计理数通用版 3.2 利用导数判断函数的单调性课后限时作业(60分钟,150分)(详解为教师用书独有)A组一、选择题(本大题共6小题,每小题7分,共42分)1. 设f(x)是函数f(x)的导数,yf(x)的图象如下图所示,则yf(x)的图象最有可能是下图中的()解析:由yf(x)的图象得当1x0,所以yf(x)在(1,1)上单调递增因为当x1时,f(x)0,所以yf(x)在(,1)和(1,)上分别单调递减综合选项得只有B正确答案:B2. 若函数f(x)x3ax2x6在(0,1)内单调递减,则实数a的取值范围为 ()Aa1 Ba1 Ca1 D0a1解析:因为f(x)3x22ax

2、1,f(x)在(0,1)内单调递减,所以f(0)0,f(1)0,所以a1.答案:A3. 设f(x)是函数f(x)的导函数,将yf(x)和yf(x)的图象画在同一个直角坐标系中,不可能正确的是 ()解析:根据yf(x)的正负与yf(x)的单调性的关系,即可求解答案:D4. 已知f(x)x3bx2cxd在区间1,2上是减函数,那么bc ()A有最大值 B有最大值C有最小值 D有最小值解析:本题考查导数的基本应用和不等式的性质由已知得当1x2时,f(x)3x22bxc0恒成立,所以f(1)0且f(2)0,即所以bc(c2b)(4bc)(3)(12).答案:B5. 已知f(x)xln x,那么f(x)

3、 ()A在(0,e)上单调递增B在(0,10)上单调递增C在上单调递减,上单调递增D在上单调递减,上单调递增解析:f(x)ln x1.因为当x时,ln x1,所以此时f(x)0,则f(x)在上单调递减同理,在上单调递增,故选D.答案:D6.“0a”是“函数f(x)=ax2+2(a-1)x+2在区间(-,4上为减函数”的 ( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:当0a时,在区间上为减函数,由(-,4 可得函数f(x)在(-,4上也为减函数,反之不成立.所以0a是函数在区间(-,4上为减函数的充分不必要条件.答案:A二、填空题(本大题共4小题,每小题

4、6分,共24分)7. f(x)xln x的单调减区间为 .解析:令yf(x)xln x,由解得0x1,故减区间为(0,1)答案:(0,1)8. 已知函数f(x)x3kx在区间(3,1)上不单调,则实数k的取值范围是 .解析:f(x)3x2k.令f(x)0,则x.因为在(3,1)上函数不单调,所以31,即3k27.答案:3k0时,f(x)0,g(x)0,则x”或“0时f(x)0,g(x)0,所以函数f(x)和g(x)在x(0,+)上均为增函数,因此当x0时,f(x)为增函数,g(x)为减函数,所以当x0,g(x)0,所以f(x)g(x)0.答案:10.函数y=f(x)在定义域内可导,其图象如图所

5、示,记y=f(x)的导函数为y=f(x),则不等式f(x)0的解集为 .解析:由函数y=f(x)的定义域内的图象可得,函数y=f(x)的图象大致如图所示.由图象可得不等式f(x)0的解集为.答案:三、解答题(本大题共2小题,每小题12分,共24分)11. 求函数f(x)3x22ln x的单调区间解:函数的定义域为(0,),f(x)6x2.令f(x)0,即20,解得x或x.又因为x0,所以x.令f(x)0,即20.解得x0或0x.又因为x0,所以0x.所以f(x)的单调递增区间为,单调递减区间为.12.(2009浙江)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,bR).(1)

6、若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调,求a的取值范围.解:(1)由函数f(x)的图象过原点,得b=0,又f(x)=3x2+2(1-a)x-a(a+2),f(x)在原点处的切线斜率是-3,则-a(a+2)=-3,所以a=-3或a=1.(2)由f(x)=0,得x1=a,x2=又f(x)在(-1,1)上不单调,即-解得所以a的取值范围是.B组一、选择题(本大题共2小题,每小题8分,共16分)1. 函数f(x)ax3bx22x(a、bR,且ab0)的图象如图所示,且x1x20,则有()Aa0,b0 Ba0,b0Ca0,b0

7、 Da0,b0解析:由题意知f(x)3ax22bx2.令f(x)0,则x1、x2为f(x)0的两个根,即x1x20,x1x20,b0,选A.答案:A2. 如果函数f(x)2x2ln x在定义域的一个子区间(k1,k1)上不是单调函数,则实数k的取值范围是 ()Ak Bk Ck D1k0.因为(k1,k1)是定义域的一个子区间,所以k10,k1.由题意令f(x)0,则4x0,则x.所以(k1,k1),即k1k1,解得k.又k1,所以1k.故选D.答案:D二、填空题(本大题共2小题,每小题8分,共16分)3.函数f(x)=-x3+bx在区间(0,1)上单调递增,并且方程f(x)=0的根都在区间-2

8、,2内,则b的取值范围是 .解析:因为f(x)=-3x2+b,所以即b3.因为,又f(x)=0的根在-2,2内,则b0或02,则b4,所以b4.故b的取值范围为3,4.答案:3,44.(2009福建)设f(x)、g(x)是分别定义在R上的奇函数和偶函数,当x0,且g(-3)=0,则不等式f(x)g(x)0的解集是 .解析:因为x0,所以f(x)g(x)0,所以f(x)g(x)在(-,0)上为增函数,因为f(-3)g(-3)=0,所以f(x)g(x)0时,x0时,若f(x)g(x)0,则0x3.故f(x)g(x)0恒成立,求a的取值范围;(2)求g(x)f(x)的单调区间解:(1)由题意知,f(

9、x)ln(1x)a0,则a0,即h(x)在1,)上单调递增所以a1时,x(1,a2)时,g(x)0,g(x)在(a2,)上单调递增当a1时,x(1,),g(x)0,g(x)在(1,)上单调递增综上:当a1时,g(x)的增区间为(a2,),减区间为(1,a2);当a1时,g(x)的增区间为(1,)6.(2010全国新课标)设函数.(1)若,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围.解:(1)时,,.当x(-,-1),(0,+)时,f(x)0;当x(-1,0)时,f(x)0,g(x)为增函数,则g(0)=0,从而当x0时,g(x)0,即f(x)0.若a1,则当x(0,ln a)时,g(x)0,g(x)为减函数,而g(0)=0,从而当x(0,ln a)时,g(x)0,即f(x)0.综合得a的取值范围为(-,1.6用心 爱心 专心

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服