ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:801KB ,
资源ID:6261961      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6261961.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(历年高考数学真题考点归纳-2010年-第九章-解析几何-第二节-圆锥曲线1.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

历年高考数学真题考点归纳-2010年-第九章-解析几何-第二节-圆锥曲线1.doc

1、历年高考真题考点归纳 2010年 第九章 解析几何 第二节 圆锥曲线1一、选择题1.(2010湖南文)5. 设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是A. 4 B. 6 C. 8 D. 12【答案】B 2.(2010浙江理)(8)设、分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的渐近线方程为(A) (B) (C) (D)解析:利用题设条件和双曲线性质在三角形中寻找等量关系,得出a与b之间的等量关系,可知答案选C,本题主要考察三角与双曲线的相关知识点,突出了对计算能力和综合运用知识能力的考察,属中档题3.(2010全国卷

2、2理)(12)已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点若,则(A)1 (B) (C) (D)2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l为椭圆的有准线,e为离心率,过A,B分别作AA1,BB1垂直于l,A1,B为垂足,过B作BE垂直于AA1与E,由第二定义得,由,得,即k=,故选B.4.(2010陕西文)9.已知抛物线y22px(p0)的准线与圆(x3)2y216相切,则p的值为(A)(B)1(C)2(D)4【答案】 C 解析:本题考查抛物线的相关几何性质及直线与圆的位置关系法一:抛物线y22px(p0)的准线方程为,因为抛物线y22px(p0)的

3、准线与圆(x3)2y216相切,所以 法二:作图可知,抛物线y22px(p0)的准线与圆(x3)2y216相切与点(-1,0) 所以5.(2010辽宁文)(9)设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A) (B) (C) (D)【答案】D解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为一条渐近线斜率为:,直线的斜率为:,解得.6.(2010辽宁文)(7)设抛物线的焦点为,准线为,为抛物线上一点,为垂足,如果直线斜率为,那么(A) (B) 8 (C) (D) 16【答案】 B解析:选B.利用抛物线定义,易证为正三角形,则

4、7.(2010辽宁理) (9)设双曲线的个焦点为F;虚轴的个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为 (A) (B) (C) (D) 【答案】D【命题立意】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想。【解析】设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=垂直,所以,即b2=ac所以c2-a2=ac,即e2-e-1=0,所以或(舍去)8.(2010辽宁理)(7)设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PAl,A为垂足如果直线AF的斜率为,那么|PF|= (A) (

5、B)8 (C) (D) 16【答案】B【命题立意】本题考查了抛物线的定义、抛物线的焦点与准线、直线与抛物线的位置关系,考查了等价转化的思想。【解析】抛物线的焦点F(2,0),直线AF的方程为,所以点、,从而|PF|=6+2=89.(2010全国卷2文)(12)已知椭圆C:(ab0)的离心率为,过右焦点F且斜率为k(k0)的直线于C相交于A、B两点,若。则k =(A)1 (B) (C) (D)2【答案】B【解析】, , , ,设, ,直线AB方程为。代入消去, , ,解得,10.(2010浙江文)(10)设O为坐标原点,,是双曲线(a0,b0)的焦点,若在双曲线上存在点P,满足P=60,OP=,

6、则该双曲线的渐近线方程为(A)xy=0 (B)xy=0(C)x=0 (D)y=0【答案】 D解析:选D,本题将解析几何与三角知识相结合,主要考察了双曲线的定义、标准方程,几何图形、几何性质、渐近线方程,以及斜三角形的解法,属中档题11.(2010重庆理)(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线 B. 椭圆 C. 抛物线 D. 双曲线【答案】 D解析:排除法 轨迹是轴对称图形,排除A、C,轨迹与已知直线不能有交点,排除B12.(2010山东文)(9)已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则

7、该抛物线的准线方程为 (A) (B) (C) (D)【答案】B13.(2010四川理)(9)椭圆的右焦点,其右准线与轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点,则椭圆离心率的取值范围是(A) (B) (C) (D)解析:由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等而|FA| |PF|ac,ac于是ac,ac即acc2b2acc2 又e(0,1)故e【答案】D14.(2010天津理)(5)已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为(A) (B) (C) (D)【答案】B【解析】本题主要考查双曲线与抛物线的

8、几何性质与标准方程,属于容易题。依题意知,所以双曲线的方程为【温馨提示】选择、填空中的圆锥曲线问题通常考查圆锥曲线的定义与基本性质,这部分内容也是高考的热点内容之一,在每年的天津卷中三种软件曲线都会在题目中出现。15.(2010广东文)7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A. B. C. D. 【答案】B16.(2010福建文)11若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为A2 B3 C6 D8【答案】C【解析】由题意,F(-1,0),设点P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最大

9、值,选C。【命题意图】本题考查椭圆的方程、几何性质、平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。17.(2010全国卷1文)(8)已知、为双曲线C:的左、右焦点,点P在C上,=,则(A)2 (B)4 (C) 6 (D) 8【答案】B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析1】.由余弦定理得cosP=4【解析2】由焦点三角形面积公式得:418.(2010全国卷1理)(9)已知、为双曲线C:的左、右焦点,点P在C上,P=,则P到

10、x轴的距离为(A) (B) (C) (D) 【答案】 B19.(2010四川文)(10)椭圆的右焦点为F,其右准线与轴的交点为在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是(A)(0, (B)(0, (C),1) (D),1)【答案】D【解析】由题意,椭圆上存在点P,使得线段AP的垂直平分线过点,即F点到P点与A点的距离相等而|FA| |PF|ac,ac于是ac,ac即acc2b2acc2又e(0,1)故e20.(2010四川文)(3)抛物线的焦点到准线的距离是(A) 1 (B)2 (C)4 (D)8【答案】C【解析】由y22px8x知p4 又交点到准线的距离就是p2

11、1.(2010湖北文)9.若直线与曲线有公共点,则b的取值范围是A.,B.,3C.-1,D.,322.(2010山东理)(7)由曲线y=,y=围成的封闭图形面积为(A)(B) (C) (D) 【答案】A【解析】由题意得:所求封闭图形的面积为,故选A。【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。23.(2010安徽理)5、双曲线方程为,则它的右焦点坐标为A、B、C、D、【答案】C【解析】双曲线的,所以右焦点为.【误区警示】本题考查双曲线的交点,把双曲线方程先转化为标准方程,然后利用求出c即可得出交点坐标.但因方程不是标准形式,很多学生会误认为或,从而得出错误结论.24

12、.(2010湖北理数)9.若直线y=x+b与曲线有公共点,则b的取值范围是A. B. C. D. 【答案】C【解析】曲线方程可化简为,即表示圆心为(2,3)半径为2的半圆,依据数形结合,当直线与此半圆相切时须满足圆心(2,3)到直线y=x+b距离等于2,解得,因为是下半圆故可得(舍),当直线过(0,3)时,解得b=3,故所以C正确.25.(2010福建理)A B CD【答案】C【解析】经分析容易得出正确,故选C。【命题意图】本题属新题型,考查函数的相关知识。26.(2010福建理)7若点O和点分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为 ( )A B C D【答案】

13、B【解析】因为是已知双曲线的左焦点,所以,即,所以双曲线方程为,设点P,则有,解得,因为,所以=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值,故的取值范围是,选B。【命题意图】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力。27.(2010福建理数)2以抛物线的焦点为圆心,且过坐标原点的圆的方程为( )A B C D【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为,故所求圆的方程为,即,选D。【命题意图】本题考查抛物线的

14、几何性质以及圆的方程的求法,属基础题。二、填空题1.(2010上海文)8.动点到点的距离与它到直线的距离相等,则的轨迹方程为 。【答案】y2=8x【解析】考查抛物线定义及标准方程定义知的轨迹是以为焦点的抛物线,p=2所以其方程为y2=8x2.(2010浙江理)(13)设抛物线的焦点为,点.若线段的中点在抛物线上,则到该抛物线准线的距离为_。【解析】利用抛物线的定义结合题设条件可得出p的值为,B点坐标为()所以点B到抛物线准线的距离为,本题主要考察抛物线的定义及几何性质,属容易题3.(2010全国卷2理)(15)已知抛物线的准线为,过且斜率为的直线与相交于点,与的一个交点为若,则 【答案】2 【

15、命题意图】本题主要考查抛物线的定义与性质.【解析】过B作BE垂直于准线于E,M为中点,又斜率为,M为抛物线的焦点,2.4.(2010全国卷2文)(15)已知抛物线C:y2=2px(p0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=_【解析】2:本题考查了抛物线的几何性质设直线AB:,代入得,又 , ,解得,解得(舍去)5.(2010江西理)15.点在双曲线的右支上,若点A到右焦点的距离等于,则= 【答案】 2 【解析】考查圆锥曲线的基本概念和第二定义的转化,读取a=2.c=6,6.(2010安徽文)(12)抛物线的焦点坐标是 答案:【解析】抛物线,所以,所

16、以焦点.【误区警示】本题考查抛物线的交点.部分学生因不会求,或求出后,误认为焦点,还有没有弄清楚焦点位置,从而得出错误结论.7.(2010重庆文)(13)已知过抛物线的焦点的直线交该抛物线于、两点,则_ .【答案】 2解析:由抛物线的定义可知 故28.(2010重庆理)(14)已知以F为焦点的抛物线上的两点A、B满足,则弦AB的中点到准线的距离为_.解析:设BF=m,由抛物线的定义知中,AC=2m,AB=4m, 直线AB方程为 与抛物线方程联立消y得所以AB中点到准线距离为9.(2010北京文)(13)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。答案

17、:() 10.(2010北京理)(13)已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。【答案】(,0) 11.(2010天津文)(13)已知双曲线的一条渐近线方程是,它的一个焦点与抛物线的焦点相同。则双曲线的方程为 。【答案】【解析】本题主要考查了双曲线和抛物线的几何性质及双曲线的标准方程,属于容易题。由渐近线方程可知 因为抛物线的焦点为(4,0),所以c=4 又 联立,解得,所以双曲线的方程为【温馨提示】求圆锥曲线的标准方程通常利用待定洗漱法求解,注意双曲线中c最大。12.(2010福建文数)13 若双曲线-=1(b0)的渐近线方程式为y=,则等于。

18、【答案】1【解析】由题意知,解得b=1。【命题意图】本小题考查双曲线的几何性质、待定系数法,属基础题。13.(2010全国卷1文数)(16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点, 且,则的离心率为 .【答案】 【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析1】如图,,作轴于点D1,则由,得,所以,即,由椭圆的第二定义得又由,得【解析2】设椭圆方程为第一标准形式,设,F分 BD所成的比为2,代入,14.(2010全国卷1理)15.(2010湖北文)15.已知椭圆的两焦点为,点满足,则|+|的取值范围为_,直线与椭圆C的公共点个数_。【答案】【解析】依题意知,点P在椭圆内部.画出图形,由数形结合可得,当P在原点处时,当P在椭圆顶点处时,取到为,故范围为.因为在椭圆的内部,则直线上的点(x, y)均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个.16.(2010江苏卷)6、在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_【解析】考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。- 16 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服