ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:33KB ,
资源ID:6231396      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6231396.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初三数学方案设计专题.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初三数学方案设计专题.doc

1、初三数学方案设计专题方案设计与决策在中考中是常见题型涉及代数方面的有方程(组)、不等式(组)和函数两类;涉及几何方面的有测量、包装等考向一利用方程(组)或不等式(组)进行方案设计生活中许多实际问题需借助方程(组)或不等式(组)的求解,不仅如此还需要对方程(组)或不等式(组)的解,进行有针对性的分析作出方案设计与决策【例1】 (2011湖南永州)某学校为开展“阳光体育”活动,计划拿出不超过3 000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为832,且其单价和为130元(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球

2、拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 分析:(1)已知篮球、羽毛球拍和乒乓球拍的单价比为832,且其单价和为130元可以设它们的单价分别为8x,3x,2x元,列一元一次方程来解决;(2)根据购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,找出羽毛球拍和乒乓球拍与篮球的关系,再根据购买乒乓球拍的数量不超过15副和不超过3 000元的资金购买一批篮球、羽毛球拍和乒乓球拍这两个不等关系列不等式组,求出篮球数量的范围,从而制定出方案解:(1)因为篮球、羽毛球拍和乒乓球拍的单价比为832,所以

3、,可以依次设它们的单价分别为8x,3x,2x元,于是,得8x3x2x130,解得x10.所以,篮球、羽毛球拍和乒乓球拍的单价分别为80元、30元和20元(2)设购买篮球的数量为y个,则购买羽毛球拍的数量为4y副,购买乒乓球拍的数量为(80y4y)副,根据题意,得80y304y20(80y4y)3 000 ;80y4y15 由不等式,得y14,由不等式,得y13.于是,不等式组的解集为13y14,因为y取整数,所以y只能取13或14.因此,一共有两个方案:方案一,当y13时,篮球购买13个,羽毛球拍购买52副,乒乓球拍购买15副;方案二,当y14时,篮球购买14个,羽毛球拍购买56副,乒乓球拍购

4、买10副 方法归纳:本类型题目主要特点有:(1)当利用不等关系来确定取值范围时,要结合不等式的取值范围来讨论;(2)当利用方程来确定取值范围时,往往利用解的整 数性来解答需要说明的是利用方程(组)或不等式(组)进行方案设计常常可借助一次函数的性质进行决策考向二利用二次函数进行方案设计 在商业活动或生产活动过程中常常遇到最优化问题解决此类问题一般可借助二次函数以及二次函数的最大(小)值进行最优方案的选择或设计【例2】 (2011江津)在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场,其中四边形ABCD是矩形,分别以AB,BC ,CD,DA边为直径向外作半圆,若整个广场的周长

5、为628米,设矩形的边长ABy米,BCx米(注:取3.14)(1)试用含x的代数式表示y.(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;设该工程的总造价为w元,求w关于x的函数关系式若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说

6、明理由 分析:(1)根据圆周长列出关于x,y的等式;(2)根据三个区域的面积和价格标准,列出关于x的函数关系式;比较二次函数的最小值与1千万的大小,给出判断;根据“建设刚好把政府投入的1千万与企业募捐资金64.82万元刚好用完”列出相应的一元二次方程,解出方程的根,根据长宽的要求进行取舍解:(1)由题意得yx628.3.14,3.14y3.14x628.xy200.则y200x.(2)w428xy400(y/2)2400(x/2)2428x(200x)4003.14(200x)244003.14x24200x240 000x12 560 000.仅靠政府投入的1千万元不能完成该工程的建设任务,

7、其理由如下:由知w200(x100)21.056107107,所以不能由题意,得x23y,即x23(200x),解得x80.0x80.又根据题意,得w200(x100)21.0561071076.482105.整理,得(x100)2441,解得x179,x2121(不合题意,舍去)只 能取x79,则y20079121.设计的方案是:AB长为121米,BC长为79米,再分别以各边为直径向外作半圆 方法归纳:利用二次函数解决方案设计问题一般地需要先建立二次函数解析式,然后根据求二次函数最值的方法,即当xb/2a时,y有最大(小)值(4acb2)/4a求得最值最后 要结合问题情境确定方案注意有时确定

8、最值时,需要考虑要在x的取值范围内考向三利用几何知识进行方案设计与决策 利用几何知识进行方案设计,不仅要有一定的几何作图能力,而且要能熟练地运用几何的有关性质及全等、相似、图形变换、方程及三角函数的有关知识,并注意充分发挥分类讨论、类比归纳 、猜想验证等数学思想方法的作用【例3】 某校数学研究性学习小组准备作测量旗杆的数学实践活动,来到旗杆下,发现旗杆AB顶端A垂下一段绳子ABC.经研究发现,原来制定的一系列测量方案,在此都不需要如今只借助垂下的绳子和一根皮尺,在不攀爬旗杆的情况下,测量相关 数据,就可以计算出旗杆的高度(1)请你给出具体的测量方案,并写出推算旗杆高度的过程;(2)推测这个数学

9、研究性学习小组原来制定的一系列测量旗杆的方案是什么? 分析:针对该问题所提供的情境知道:(1)旗杆垂直于地面;(2)旗杆AB顶端A垂下一段绳子,即绳子比旗杆长出的部分可度量因此可联系相关的数学知识利用勾股定理探讨具体测量方案解:(1)测量方案设计如下:测量绳子比旗杆多出的部分BCa m;把绳子ABC拉紧到地面D处,测量B到D的距离BDb m.推算过程:设旗杆的高度为x m,则AD是(xa) m.在直角ABD中,根据AB2BD2AD2得x2b2(xa)2,x2b2x2a22ax,解得x(b2a2)/2a.(2)这个数学研究性学习小组原来制定的测量旗杆的方案可能有以下几个: 方法归纳:关于物体的测量是一个实际问题,因此必须考虑实际环境,结合实际环境,充分运用所学知识制定方案,制定方案时要遵循可操作性强、简单易行原则 第2个问题的测量方案还可有其 他的,有兴趣的同学可自行进一步探讨对于以上2种测量方案的相关计算方法,请同学们自己给出

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服