ImageVerifierCode 换一换
格式:PPTX , 页数:19 ,大小:431KB ,
资源ID:6125029      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6125029.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(中考数学专门复习6公开课获奖课件.pptx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考数学专门复习6公开课获奖课件.pptx

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,二、代数式,课程原则及学习目旳,中考数学专门复习课件,6,第1页,一、代数式分类:,基本概念:,第2页,(3)代数式:课标规定(有放矢),在现实情境中深入理解用字母表达数意义。,能分析简朴问题数量关系,并用代数式表达。参见例3与例4,能解释某些简朴代数式实际背景或几何意义。参见例5,会求代数式值;能根据特定问题查阅资料,找到所需要公式,并会代入详细值进行计算。,第3页,(4)整式与分式,理解整数指数幂意义和基本性质,会用科学记数

2、法表达数(包括在计算器上表达)。,理解整式概念,会进行简朴整式加1减运算;会进行简朴整式乘法运算、(其中多项式相乘仅指一次式相乘)。,第4页,会推导乘法公式:,(a十b)(ab)a2b2;,(a十b)2a2十2ab十b2,,理解公式几何背景,并能进行简朴计算。,.会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。,理解分式概念,会运用分式基本性质进行约分和通分,会进行简朴分式加、减、乘、除运算。参见例6,第5页,二、整式概念,都是数与字母积代数式叫做单项式,单独一种数或字母也是单项式.,一种单项式中,所有字母指数和叫做这个单项式次数,单独一种非0多次数是0.,几种单项

3、式和叫做多项式.,一种多项式中,次数最高项次数,叫做这个多项式次数.,单项式和多项式统称,整式,.,单项式中数字因数叫做,单项式,系数,.,第6页,三、整式运算,1.整式加减运算法则及环节:,(1)列式;(2)去括号;(3)合并同类项.,2.,整式乘法:,(1),同底数幂相乘,底数不变,指数相加,.,即,a,m,a,n,=a,m+n,(m.n,都是正整数,).,(2),幂乘方,底数不变,指数相乘,.,即,(a,m,),n,=a,m n,(,m,n,都是正整数),(3),积乘方,等于把积中每个因式分别乘方,再把幂相乘,.,即,(ab),n,=a,n,b,n,(n,是正整数,),第7页,三、整式运

4、算,(4),同底数幂相除,底数不变,指数相减,.,a,m,a,n,=a,m-n,(a0,m,n,是正整数,且,m,n).,(5)单项式乘以单项式运算性质:,单项式与单项式相乘,把它们系数,相似字母幂分别相乘,其他字母连同它指数不变用为积一种因式.,(6)单项式与多项式相乘运算性质,单项式与多项式相乘,就是根据分派律用单项式每一项去乘多项式每一项,再把所得积相加.,(7)多项式与多项式相乘运算性质,多项式与多项式相乘,先用一种多项式每一项分别去乘另一种多项式每一项,再把所得积相加.,第8页,四、乘法公式,(8),平方差公式,:(a+b)(a-b)=a,2,-b,2,.,两数和与这两数差积,等于它

5、们平方差,.,(9),完全平方公式,(a+b),2,=a,2,+2ab+b,2,;(a-b),2,=a,2,-2ab+b,2,.,两数和,(,或两数差,),平方等于它们平方和加上,(,或减去,),它们积,2,倍,.,.,(10),特,二次乘法公式:,(x+a)(x+b)=x,2,+(a+b)x+ab.,(,11),完全平方公式推广:,(a+b+c),2,=a,2,+b,2,+c,2,+2ab+2bc+2ac.,(a+b),3,=a,3,+3a,2,b+3ab,2,+b,3,.,(a-b),3,=a,3,-3a,2,b+3ab,2,-b,3,.,第9页,五、,0,指数、负整数指数,(,1,),a

6、,0,=1(a0).,即 任何不等于,0,数,0,次幂都等于,1.,a,-p,=(a0,p,是正整数,).,即任何不等于,0,数,-p,次幂等于这个数,p,次幂倒数,.,第10页,六、分解因式概念,1.把一种多项式化成几种整式积形式,这种变形叫做把这个多项式分解因式.,.,分解因式与整式乘法关系,:,是,互为逆变形,.,从左到右是分解因式其特点是:由,和差,形式(多项式)转,化,成整式,积,形式;从右到左是整式乘法其特点是:由整式,积,形式转,化,成,和差,形式(多项式),.,2.注意:分解成果一定是几种整式乘积形式,若有相似因式,则写成幂形式.,每一种因式要分解到不能分解为止.,分解因式,如

7、:,a,2,-b,2,(,a+b)(a-b),整式乘法,第11页,七、分解因式措施,1.多项式各项都具有相似因式,叫做这个多项式各项公因式,多项式公因式构成:各项系数最大公约数,相似因式最低次幂.,(1)提公因式法:假如一种多项式各项具有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式积.这种分解因式措施叫做提公因式法.,提公因式法分解因式与单项式乘多项式关系,:,(,),单项式与多项式相乘,提公因式法,第12页,七、分解因式措施,(2)运用公式法:,平方差公式:a2-b2(a+b)(a-b).,完全平方公式,:a,2,+2ab+b,2,=(a+b),2,;,a,2,-2ab+b

8、,2,=(a-b),2,;,(3),十字相乘法,:,代数式,:a,2,+2ab+b,2,及,a,2,2ab+b,2,叫做完全平方式,:,第13页,八、分式概念,1.假如整式A除以整式B,可以表到达 形式.且除式B中具有字母,那么称式子 为分式(fraction).,其中,A,叫做分式分子,B,叫做分式分母。,2.,整式和分式,统称,有理式,.,整式和分式辨别在于:除式B中与否具有字母.,分式隐含条件是:分式,分母不等于,0.,分式值为,0,条件是:分子为,0,且分母,不等于,0.,第14页,九、分式基本性质,1.分式基本性质:分式分子与分母都乘以(或除以)同一种不等于零整式,分式值不变,用式子

9、表达是:,2.,约分与通分,(1)最大公因式构成:,分子分母系数最大公约数;,分子分母中相似因式最低次幂.,(2)最简公分母构成:,各分母系数最小公倍数;,各分母中所有不一样样因式最高次幂.,或,(,其中,M,是不等于零整式,),第15页,十、分式运算,1.,分式,乘除法法则,:,(1),两个,分式相乘,把分子相乘积作为积分子,把分母相乘积作为积分母,;,(2),两个,分式相除,把除式分子分母颠倒位置后,再与被除式相乘,.,(3),分式乘方,:,把分子分母各自乘方,.,第16页,十、分式运算,(4),分式加减法,法则,同分母,分式加减法法则,:,分母不变,分子相加减,.,异分母,分式加减法法则,:,先通分,把异分母分式化为同分母分式,.,(5)分式运算原则:,凡遇多项式,先分解因式,再约分或通分;,成果化成最简分式.,第17页,能力测试,独立作业,数学专页,第三,28,期,第18页,祝同学们:,金榜题名!,愿我们:,心想事成!,第19页,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服