ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:116.50KB ,
资源ID:6102450      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6102450.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(课时跟踪检测(五十一) 双曲线.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

课时跟踪检测(五十一) 双曲线.doc

1、课时跟踪检测(五十一) 双曲线 第Ⅰ组:全员必做题 1.设P是双曲线-=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左,右焦点,若|PF1|=3,则|PF2|=(  ) A.1或5          B.6 C.7 D.9 2.(2013·四川高考)抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是(  ) A. B. C.1 D. 3.(2013·深圳调研) 双曲线x2-my2=1的实轴长是虚轴长的2倍,则m=(  ) A. B. C.2 D.4 4. (2013·郑州模拟)如图所示,F1,F2是双曲线-=1(a>

2、0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点分别为A,B,且△F2AB是等边三角形,则双曲线的离心率为(  ) A.+1 B.+1 C. D. 5.(2013·武汉模拟)已知P是双曲线-=1(a>0,b>0)上的点,F1,F2是其焦点,双曲线的离心率是,且·,=0,若△PF1F2的面积为9,则a+b的值为(  ) A.5 B.6 C.7 D.8 6. (2013·惠州模拟)已知双曲线-=1(a>0,b>0)的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为________. 7.(2013·陕

3、西高考) 双曲线-=1的离心率为,则m等于________. 8. (2013·石家庄模拟)F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若△ABF2是等边三角形,则该双曲线的离心率为________. 9.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为. (1)求双曲线的方程; (2)已知直线y=x-2与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使+=t,求t的值及点D的坐标. 10. P(x0,y0)(x0≠

4、±a)是双曲线E:-=1(a>0,b>0)上一点,M、N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为. (1)求双曲线的离心率; (2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值. 第Ⅱ组:重点选做题 1.(2013·河北省重点中学联考) 设F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线的离心率为(  ) A. B. C. D. 2.(2014·江西临川模拟)双

5、曲线-=-1(a>0,b>0)与抛物线y=x2有一个公共焦点F,双曲线上过点F且垂直实轴的弦长为,则双曲线的离心率等于________. 答 案 第Ⅰ组:全员必做题 1.选C 由渐近线方程3x-2y=0,知=.又b2=9,所以a=2,从而|PF2|=7. 2.选B 因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y=±x,所以所求距离为,故选B. 3.选D 双曲线方程可化为x2-=1, ∴实轴长为2,虚轴长为2 , ∴2=2,解得m=4. 4.选B 连接AF1,依题意得AF1⊥AF2,∠AF2F1=30°,|AF1|=c,|AF2|=c,因此该双曲线的离心率e===

6、+1,选B. 5.选C 设c=,则=, ∴a=c,∴b==c. ∵,·,=0(即PF1⊥PF2), S△PF1F2=9,∴|PF1|·|PF2|=18. ∵ ∴ 两式相减得,2|PF1|·|PF2|=4b2, ∴b2=9,∴b=3,∴c=5,a=4,∴a+b=7. 6.解析:由已知可得抛物线y2=4x的焦点坐标为(,0),a2+b2=10.又双曲线的离心率e==,∴a=3,b=1, 双曲线的方程为-y2=1. 答案:-y2=1 7.解析:⇒=⇒m=9. 答案:9 8.解析:如图,由双曲线定义得,|BF1|-|BF2|= |AF2|-|AF1|=2a,因为△ABF2

7、是正三角形,所以|BF2|=|AF2|= |AB|,因此|AF1|=2a, |AF2|=4a,且∠F1AF2=120°,在△F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=. 答案: 9.解:(1)由题意知a=2, ∴一条渐近线为y= x. 即bx-2y=0.∴=. ∴b2=3,∴双曲线的方程为-=1. (2)设M(x1,y1),N(x2,y2),D(x0,y0), 则x1+x2=tx0,y1+y2=ty0. 将直线方程代入双曲线方程得 x2-16x+84=0, 则x1+x2=16,y1+y2=12. ∴∴ ∴t=4,点D的坐标为(4,3

8、). 10.解:(1)由点P(x0,y0)(x≠±a) 在双曲线-=1上,有-=1. 由题意又有·=, 可得a2=5b2,c2=a2+b2=6b2, 则e==. (2)联立,得4x2-10cx+35b2=0, 设A(x1,y1),B(x2,y2), 则① 设=(x3,y3),=λ+,即 又C为双曲线上一点,即x-5y=5b2, 有(λx1+x2)2-5(λy1+y2)2=5b2. 化简得:λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2, 又A(x1,y1),B(x2,y2)在双曲线上, 所以x-5y=5b2,x-5y=5b2. 由①式又有x1x2-5y1y2=x1x2-5(x1-c)·(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,得:λ2+4λ=0,解得λ=0,或λ=-4. 第Ⅱ组:重点选做题 1.选B 由题可知点A在双曲线的右支上,则|AF1|-|AF2|=2|AF2|=2a,则|AF2|=a,得|AF1|=3a,由∠F1AF2=90°,得(3a)2+a2=(2c)2,则e==. 2.解析:双曲线与抛物线x2=8y的公共焦点F的坐标为(0,2),由题意知点在双曲线上,∴ 得a2=3,故e==. 答案:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服