ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:55.51KB ,
资源ID:6082214      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6082214.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(勾股定理与面积问题.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

勾股定理与面积问题.doc

1、课题:勾股定理与面积问题学习目标: 1、能将有关图形转化为直角三角形的数学模型,并利用勾股定理解决有关面积计算问题;2、在学习过程中体验相关数学思想,培养合作学习的能力。学习重难点:重点是将非直角三角形转化为直角三角形;难点是列方程解决相关问题。学习过程:一、预习交流(根据学案提前自主预习,上课时小组内进行交流,代表自由发言。)二、明确目标(教师口述教学目标,使学生的学习能主动围绕目标进行。)三、分组合作(各小组对自己的任务深入探究,做好分工,做好组内帮扶,做好展示准备。)四、展现提升(听讲时找到最合适的位置,对别的组展示予以点评、补充的要特别加分。教师密切关注展示中出现的问题,适时点拨、归纳

2、、追问、强调、评价)1、等腰三角形的面积计算问题(1)ABC中,AB=AC=8cm, B=30,则ABC的面积为 (2)等边ABC的边长为2,则面积为(教师预见:学生可能对30度角所对的直角边等于斜边的一半,或三线合一的性质有遗忘。学生可能对带根号的数字运算感觉困难。教师追问:作高后转化成的直角三角形中有哪些已知条件?等边三角形的面积与边长之间的关系是什么?教师强调:通过作高,转化为两个直角三角形,从而具备了使用勾股定理的条件。)2、四边形的面积计算问题(1)四边形ABCD中,BAD=DBC=90,AD=3,AB=4,BC=12,求CD的长和四边形ABCD的面积。BACBACDD(2)如图,四

3、边形ABCD中,BAD=DCB=90,B=60,AB=2,CD=1, 求四边形ABCD的面积。(教师预见:学生可能会有多种方法,应鼓励展示,并比较鉴别方法优劣; 教师追问:为什么延长BA、CD不容易解出来?)3、李大叔承包了一个矩形养鱼池,已知其面积为48cm2,对角线长为10m.为建造栅栏,需要计算鱼池周长。你能帮李大叔算一算吗?(教师预见:学生可能会设一个未知数列方程。教师归纳:整体思想与完全平方公式)4、小强家有一块三角形花园,量得两边长分别为7厘米、5厘米,第三边上的高为3厘米。求花园的面积。(教师预见:学生可能想不到分类讨论)5、如图,直线l上有三个正方形a、b、c,若a、b的面积分

4、别为5和11,求c的面积。(如果学生感觉困难,则教师点拨:BC与DE有什么关系?)D a啊cEABCb6、已知ABC的三边AB=10,BC=14, AC=8,求ABC的面积。(预见:学生有可能想不到列方程:学生列方程时有可能设高为x,列出无理方程。追问:此题相等关系是什么?总结:已知三边可以求三角形的面积)ACB五、穿插巩固(学生对今天展示的题目进行反思、消化、整理)六、达标测评。这节课你有哪些收获?解决这类问题的关键是什么?在小组内交流。当堂反馈题目:展示的第2题中的第2小题。组内对子帮扶)课外作业:按照学案中的自学导读预习勾股定理的逆定理勾股定理的逆定理预习提纲预习目标:1、经历命题2的猜

5、想过程。2、会证明命题2。3、了解互逆命题的概念。区分命题1和命题2的条件和结论4、能用勾股定理的逆定理判断一个三角形是直角三角形。预习过程:(先自主学习。阅读文本课本73至75页。初步弄懂课文大意。然后围绕下列问题在小组交流。)一、猜一猜1、画一画:画出边长分别是下列各组数的三角形(单位:厘米) A:3、4、3 ; B:3、4、5; C:3、4、6; D:6、8、102.测量:用你的量角器分别测量一下上述各三角形的最大角的度数,并记录如下: A:_ B:_ C:_ D:_3.判断:请判断一下上述你所画的三角形的形状. A:_ B:_ C:_ D:_4.找规律:根据上述每个三角形所给的各组边长

6、请你找出最长边 的平方与其他两边的平方和之间的关系。 A:_ B:_ C:_ D:_5.猜想:让我们猜想一下,一个三角形各边长数量应满足怎样的关系时,这个三角形才可能是直角三角形呢?你的猜想是 二、证一证你会证明命题2了吗?请参考课本上的方法弄懂这个问题。三、比一比、想一想写出命题1和命题2,并比较他们的条件和结论有什么关系所有命题都有逆命题吗?所有定理都有逆定理吗?思考并回答下列命题的逆命题:同位角相等两直线平行。如果天空在下雨,那么地面是湿的。对顶角相等四、议一议在很久很久以前,古埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样钉成一个三角形,这个三角形就是直角三角形。你能结合所学

7、说明理由吗?.五、试一试 判断由线段a、 b 、 c 组成的三角形是不是直角三角形:(1)a=7, b=24, c=25 (2) a=13, b=14,c=15(以下书写方式对吗?是直角三角形。)(3)错题医院:小明在判断以3,4,5为边长的三角形是否为直角三角形时,这样解答因为4252=41,32=9 425232所以以3,4,5为边长的三角形不是直角三角形问:他的解法对吗?为什么?六、拓展延伸1、在ABC中,a=15, b=17, c=8,求此三角形的面积。2、三角形的三边分别是a,b,c, 且满足等式(a+b)2-c2=2ab, 则判断此三角形的形状。 反思回顾:对于本节课你感受最深的数学思想是什么?还有什么疑惑的地方?请记下来。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服