利用图形的轴对称性研究探索线段垂直平分线的性质的评价线段垂直平分线的性质定理和判定定理可以优化证明题目的方法,这是本课最为突出的地方,感触比较深刻的就是,学生学到了新知识新方法的那个喜悦劲儿,这主要得益于学生“学案”的先行研究。本科我们安排的教学流程是:画直线的垂直平分线,研究和证明线段的垂直平分线的性质:体会线段垂直平分线的性质的应用,学习例题1,2,3,提出问题:由PA=PB,能说明1点P一定在线段AB的垂直平分线上吗?2经过P点的直线是线段AB的垂直平分线吗?过渡到线段垂直平分线的判定的研究,在证明猜想时,提出是不是过点P作线段AB的垂直平分线吗?过渡到线段垂直平分线的判定的研究,在证明猜想时,提出是不是过点P作线段的垂直平分线,学生反应比较热烈,有些同学提出了作垂直,垂足为,设法证明:有些同学提出取的中点,连接PC,证明PC垂直,学生讨论证明,得到了线段垂直平分的判定定理,并总结出证明时是“作垂直,证平分或者”作平分,论垂直”,由此体会到“过一点不可能作直线保证既垂直有平分”,思考的第二个问题也就容易理解了,提出如果有两个这样的点,根据“两点确定一条直线”就能够作出已知线段的垂直平分线了,适时地引出了例的研究,最后进行提升学习,在训练中有又可以有新的知识内容的收获。