ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:251KB ,
资源ID:6073086      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6073086.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(限时集训(二十三)-解三角形应用举例.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

限时集训(二十三)-解三角形应用举例.doc

1、限时集训(二十三)解三角形应用举例(限时:60分钟满分:110分)一、填空题(本大题共10小题,每小题5分,共50分)1某人向正东方向走x km后,向右转150,然后朝新方向走3 km,结果他离出发点恰好是 km,那么x的值为_2(2013新沂检测)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为_km.3一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45,沿点A向北偏东30前进100 m到达点B,在B点测得水柱顶端的仰角为3

2、0,则水柱的高度是_m.4(2012永州模拟)张晓华同学骑电动自行车以24 km/h的速度沿着正北方向的公路行驶,在点A处望见电视塔S在电动车的北偏东30方向上,15 min后到点B处望见电视塔在电动车的北偏东75方向上,则电动车在点B时与电视塔S的距离是_km.5某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船_触礁的危险(填“有”或“无”)6.如图,在湖面上高为10 m处测得天空中一朵云的仰角为30,测得湖中之影的俯角为45,则云距湖面的高度为_m(精确到0.1 m)7.2012年10月29日,超级风暴“桑迪”袭

3、击美国东部,如图,在灾区的搜救现场,一条搜救狗从A处沿正北方向行进x m到达B处发现一个生命迹象,然后向右转105,行进10 m到达C处发现另一生命迹象,这时它向右转135后继续前行回到出发点,那么x_m.8(2013镇江期中)某路边一树干被台风吹断后,折成与地面成45角,树干也倾斜为与地面成75角,树干底部与树尖着地处相距20 m,则折断点与树干底部的距离是_ m.9已知扇形的圆心角为2(定值),半径为R(定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为R2tan ,则按图二作出的矩形面积的最大值为_10.如图,已知A、B、C是一条直路上的三点,AB与BC各等于1 k

4、m,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在点C处看见塔在南偏东60方向,则塔到直路ABC的最短距离为_ km.二、解答题(本大题共4小题,共60分)11(满分14分)如图,某市拟在长为8 km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数yAsin x(A0,0),x0,4的图象,且图象的最高点为S(3,2);赛道的后一部分为折线段MNP.为保证参赛运动员的安全,限定MNP120.(1)求A,的值和M,P两点间的距离;(2)应如何设计,才能使折线段赛道MNP最长?12(满分14分)如图,为了解某海域海底构造,在海平面内一条直

5、线上的A、B、C三点进行测量已知AB50 m,BC120 m,于A处测得水深AD80 m,于B处测得水深BE200 m,于C处测得水深CF110 m,求DEF的余弦值13(满分16分)为扑灭某着火点,现场安排了两支水枪,如图,D是着火点,A、B分别是水枪位置,已知AB15 m,在A处看到着火点的仰角为60,ABC30,BAC105,求两支水枪的喷射距离至少是多少?14(满分16分)(2012南京四校联考)如图,渔船甲位于岛屿A的南偏西60方向的B处,且与岛屿A相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上(

6、1)求渔船甲的速度;(2)求sin 的值答案限时集训(二十三)1解析:如图所示,设此人从A出发,则ABx,BC3,AC,ABC30,由余弦定理得()2x2322x3cos 30,整理得x23x60,解得x或2.答案:或22解析:利用余弦定理解ABC.易知ACB120,在ABC中,由余弦定理得AB2AC2BC22ACBCcos 1202a22a23a2,故ABa.答案:a3解析:设水柱高度是h m,水柱底端为C,则在ABC中,A60,ACh,AB100,BCh,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度

7、是50 m.答案:504解析:如图,由条件知AB246.在ABS中,BAS30,AB6,ABS18075105,所以ASB45.由正弦定理知,所以BSsin 303.答案:35解析:由题意在三角形ABC中,AB30,BAC30,ABC135,ACB15,由正弦定理BCsinBACsin 3015()在RtBDC中,CDBC15(1)38.答案:无6解析:在ACE中,tan 30.AE m.在AED中,tan 45,AE m,CM10(2)37.3 m.答案:37.37解析:由题知,CBA75,BCA45,BAC180754560,.x m.答案: 8解析:如图,设树干底部为O,树尖着地处为B,

8、折断点为A,则ABO45,AOB75,所以OAB60.由正弦定理知,解得AO m.答案:9解析:将图二中扇形的旋转后如右图所示,则由图一的结论可知矩形ABCD,CDEF最大面积均为R2tan ,故矩形ABEF最大面积为R2tan .答案:R2tan 10解析:法一:设BAM,则在CBM中,由正弦定理得,即2.在BAM中,由正弦定理得,即.由得,即MCMA.由余弦定理得MA2.由面积关系得AChMA2sin 75.解得h(km)法二:以点B为坐标原点,BM所在的直线为x轴建立平面直角坐标系,设M(a,0),A(b,c),则C(b,c)可得解得c2.又kAB(1),故直线AB的方程为(1)xy0.

9、设点M到直线AB的距离为MD,则MD2,所以MD.答案:11解:(1)如图所示,连结MP.依题意,有A2,3.T,.y2sinx.当x4时,y2sin3,M(4,3)又P(8,0),MP5km.(2)在MNP中,MNP120,MP5,设PMN,则060.由正弦定理得,NPsin ,MNsin(60),故NPMNsin sin(60)sin(60)060,当30时,NPMN最大,即将PMN设计为30时,才能使折线赛道MNP最长12解:作DMAC交BE于N,交CF于M,DF10,DE130,EF150.在DEF中,由余弦定理得,cosDEF.13解:在ABC中,可知ACB45,由正弦定理得,解得A

10、C15 m.又CAD60,AD30,CD15,sin 105sin(4560).由正弦定理得,解得BC m.由勾股定理可得BD15 m,综上可知,两支水枪的喷射距离至少分别为30 m,15 m.14解:(1)依题意,BAC120,AB12,AC10220,BCA.在ABC中,由余弦定理,得BC2AB2AC22ABACcos BAC12220221220cos 120784.解得BC28.所以渔船甲的速度为14海里/小时(2)法一:在ABC中,因为AB12,BAC120,BC28,BCA,由正弦定理,得.即sin .法二:在ABC中,因为AB12,AC20,BC28,BCA,由余弦定理,得cos ,即cos .因为为锐角,所以sin .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服