1、14.1.1 直角三角形三边的关系(1)教学目标:1.探索并掌握勾股定理:直角三角形两直角边的平方和等于斜边的平方. 2会应用勾股定理解决实际问题教学重点:探索勾股定理的证明过程教学难点:运用勾股定理解决实际问题教学过程:一。探索勾股定理试一试测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:三角尺直角边a直角边b斜边c关系12根据已经得到的数据,请猜想三边的长度a、 b、 c之间的关系由图14.1.1得出等腰直角三角形的三边关系图14.1.1是正方形瓷砖拼成的地面,观察图中用阴影画出的三个正方形,很显然,两个小正方形P、 Q的面积之和等于大正方形R的面积即AC,图14.1.1这说明
2、,在等腰直角三角形中,两直角边的平方和等于斜边的平方那么在一般的直角三角形中,两直角边的平方和是否等于斜边的平方呢?试一试观察图14.1.2,如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积 平方厘米;正方形Q的面积 平方厘米;(每一小方格表示1平方厘米)图14.1.2正方形R的面积 平方厘米我们发现,正方形P、 Q、 R的面积之间的关系是 由此,我们得出直角三角形的三边的长度之间存在关系 由图14.1.2得出一般直角三角形的三边关系.若C=90,则勾股定理:直角三角形两直角边的平方和等于斜边的平方ABC中,C=90, 则(a、b 表示两直角边,c表示斜边)变式:2介绍勾股定理的历史
3、背景。二例题分析:例1.RtABC中,AB=c,BC=a,AC=b,B=90(1) 已知a=8,b=10,求c. (c=6)(2) 已知a=5,c=12,求b (b=13)注意:“B为直角”这个条件。三、引申提高:例2如图14.1.4,将长为5.41米的梯子AC斜靠在墙上,长为2.16米,求梯子上端A到墙的底边的垂直距离(精确到0.01米) 解 如图14.1.4,在Rt中, .米,.米, 根据勾股定理可得 .(米) 答: 梯子上端A到墙的底边的垂直距离 约为4.96米四巩固练习: 1书本P51.1.2五课时小结:1. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方2. 已知直角三角形两边的长或知道两边关系和第三边的长,可以利用勾股定理求出三角形未知边长,并可运用面积关系式求斜边上的高。六课堂作业:P55 2.3