1、动态问题二1(2014年山东泰安,第14题3分)如图,ABC中,ACB=90,A=30,AB=16点P是斜边AB上一点过点P作PQAB,垂足为P,交边AC(或边CB)于点Q,设AP=x,APQ的面积为y,则y与x之间的函数图象大致为()ABCD分析:分点Q在AC上和BC上两种情况进行讨论即可解:当点Q在AC上时,A=30,AP=x,PQ=xtan30=y=APPQ=x=x2;当点Q在BC上时,如图所示:AP=x,AB=16,A=30,BP=16x,B=60,PQ=BPtan60=(16x)=该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下故选:B点评:本题考查动点问题的函数图象,
2、有一定难度,解题关键是注意点Q在BC上这种情况2.(2014菏泽第8题3分)如图,RtABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )ABCD考点:动点问题的函数图象专题:数形结合分析:分类讨论:当0x1时,根据正方形的面积公式得到y=x2;当1x2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x22(x1)2,配方得到y=(x2)2+2,然后根据二次函数的性质对各选项进行判断解答:解:当0x1时,y=x2,当1x2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2x,RtABC中,AC=BC=2,ADM为等腰直角三角形,DM=2x,EM=x(2x)=2x2,SENM=(2x2)2=2(x1)2,y=x22(x1)2=x2+4x2=(x2)2+2,y=,故选A