ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:336.50KB ,
资源ID:6007904      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/6007904.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【全国百强校】江苏省如东高级中学2016届高三暑期作业检测数学试题.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【全国百强校】江苏省如东高级中学2016届高三暑期作业检测数学试题.doc

1、如东高级中学新高三暑假作业检测 班级_姓名_一.填空题1. 设集合Sx|x2,Tx|x23x40,则(RS)T _ 2. 已知函数的图象过点,则此函数的最小值为 3.若函数的定义域为值域为则实数的取值范围为 _ 4已知y=loga(2ax)在0,1上是x的减函数,则a的取值范围是 5.若函数f(x)有两个不同的零点,则实数a的取值范围是_来源:学科网6已知f(x)是偶函数,且f(x)在0,)上是增函数,如果f(ax1)f(x2)在x上恒成立,则实数a的取值范围为_7已知P是以F1,F2为焦点的椭圆1(ab0)上的一点,若0,tanPF1F2,则此椭圆的离心率为_8若函数f(x) 的定义域为R,

2、则实数a的取值范围是_9.函数f(x)x33x1,若对于区间3,2上的任意x1,x2,都有|f(x1)f(x2)|t,则实数t的最小值是_来源:学科网10.的值域为_11. 在ABC中,若(a2b2)sin(AB)(a2b2)sin(AB),则ABC的形状为_12下列说法正确的有 (填序号)若函数为奇函数,则;函数在上是单调减函数;若函数的定义域为,则函数的定义域为;要得到的图象,只需将的图象向右平移2个单位. 13、已知函数,若,则实数x的取值范围是 二.解答题14已知角的顶点在原点,始边与x轴的正半轴重合,终边经过点.(1)求sin 2tan 的值;(2)若函数f(x)cos(x)cos

3、sin(x)sin ,求函数yf2f2(x)在区间上的值域.15. 如图ABC中,ACBCAB,四边形ABED是边长为a的正方形,平面ABED平面ABC,若G、F分别是EC、BD的中点(1)求证:GF平面ABC;(2)求证:平面EBC平面ACD;(3)求几何体ADEBC的体积V.来源:学科网ZXXK16. 已知函数(其中为常数,)为偶函数.(1) 求的值;(2) 用定义证明函数在上是单调减函数;(3) 如果,求实数的取值范围.17.已知正项数列an,bn满足:a13,a26,bn是等差数列,且对任意正整数n,都有bn,bn1成等比数列(1)求数列bn的通项公式;来源:学科网ZXXK(2)设Sn

4、,试比较2Sn与2的大小18. 已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.(1)若APB60,试求点P的坐标;来源:Zxxk.Com(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD时,求直线CD的方程;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标19. 已知函数f(x)(k为常数,e2.718 28是自然对数的底数),曲线yf(x)在点(1,f(1)处的切线与x轴平行(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)(x2x)f(x),其中f(x)为f(x)的导函数,

5、证明:对任意x0,g(x).解得. 所以实数的取值范围是.17.解 (1)因为对任意正整数n,都有bn,bn1成等比数列,且数列an,bn均为正项数列,所以anbnbn1(nN*)由a13,a26得又bn为等差数列,即有b1b32b2,解得b1,b2,所以数列bn是首项为,公差为的等差数列所以数列bn的通项公式为bn(nN*)(2)由(1)得,对任意nN*,anbnbn1,从而有2,所以Sn21.所以2Sn2.又22,所以2Sn.所以当n1,n2时,2Sn2.18.解(1)设P(2m,m),由题可知MP2,所以(2m)2(m2)24,解之得m0,m,故所求点P的坐标为P(0,0)或P(,)(2

6、)设直线CD的方程为:y1k(x2),易知k存在,由题知圆心M到直线CD的距离为,所以,解得,k1或k,故所求直线CD的方程为:xy30或x7y90.(3)证明:设P(2m,m),MP的中点Q(m,1),因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,故其方程为:(xm)2(y1)2m2(1)2,化简得:x2y22ym(2xy2)0,此式是关于m的恒等式,故解得或所以经过A,P,M三点的圆必过定点(0,2)或(,)19.解(1)由f(x),得f(x),x(0,),由于曲线yf(x)在(1,f(1)处的切线与x轴平行,所以f(1)0,因此k1.(2)由(1)得f(x)(1xxln x),x(0,),令h(x)1xxln x,x(0,),当x(0,1)时,h(x)0;当x(1,)时,h(x)0,所以x(0,1)时,f(x)0;当x(1,)时,f(x)0,g(x)1e2等价于1xxln x0,h(x)单调递增;当x(e2,)时,h(x)0,(x)单调递增,(x)(0)0,故当x(0,)时,(x)ex(x1)0,即1.所以1xxln x1e20,g(x)1e2.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服