ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:162.50KB ,
资源ID:5997256      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5997256.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(江苏省高三数学二轮专题训练-解答题(17).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省高三数学二轮专题训练-解答题(17).doc

1、 江苏省2012届高三数学二轮专题训练:解答题(17) 本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。 1.(14分)已知函数f(x)=sin(2-)+2sin2(-) (R) (1)求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的的集合. 2.(14分)已知函数 (1)判断并证明在上的单调性; (2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点, 求的值,并求出不动点; (3)若在上恒成立 , 求的取值范围. 3.(15分)已知三次曲线C:f (x)=x3+bx2+cx+d的图

2、象关于点A(1,0)中心对称。 (1)求常数b的值及c与d的关系; (2)当x>1时,f(x)>0恒成立,求c的取值范围。 4.(15分)如图,从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t,问:x取何值时,长方体的容积V有最大值? x x x x x x x x 5.(16分)已知m∈R,直线l:和圆C:。 (1)求直线l斜率的取值范围; (2)直线l能

3、否将圆C分割成弧长的比值为的两段圆弧? 为什么? 6.(16分)设{an}是由正数组成的等差数列,Sn是其前n项和 (1)若Sn=20,S2n=40,求S3n的值; (2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立; (3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。 1.解:(1) f()=sin(2-)+1-cos2(-

4、) = 2[sin2(-)- cos2(-)]+1 =2sin[2(-)-]+1 = 2sin(2x-) +1 …………………………………………5分 ∴ T==π …………………………………………7分 (2)当f(x)取最大值时, sin(2x-)=1,有 2x- =2kπ+ ……………12分 即=kπ+ (kZ) …………………………………………13分 ∴所求的集合为{x∈R|x= kπ+ , (kZ)}.………………………14分 2.解:(1) 对任意的-----

5、 1分 -------------------------------- 3分 ∵ ∴ ∴,函数在上单调递增。-----------------4分 (2)解:令, ------------------------------------5分 令(负值舍去)--------------------------------------7分 将代入得---------9分 (3)∵ ∴ ----------------------------------------12分 ∵ ∴(

6、等号成立当) --------------------13分 ∴ 的取值范围是 ------------------------------------------14分 3.解:.(1)由图象关于A(1,0)对称得f (x)+f(2-x)=0恒成立…………………………5分 即:(2b+b)x2-4(b+3)x+2d+2c+4b+8=0恒成立 ∴ ∴………………………………………………………………………7分 (2)f(x)>0得 x3-3x2+cx+2-c>0恒成立 x3-3x2+2+(x-1)c>0 ∴x2-2x-2+c>0恒成立 而x>1时

7、  x2-2x-2+c>-3+c≥0 ∴c≥3………………………………………………………………………………14分 4.解:长方体的体积V=4x(x-a)2,(o<x<a)由≤ t 得 0<x≤ 而V′=12(x-)(x-a) ……………………………………………………………6分 ∴V在(0,)增,在(,a)递减 ……………………………………………7分 ∴若≥ 即 t≥,当x=时,V取最大值a3 ……………………………………9分 若< 即 0<t<,当x=时, V取最大值 …………………………………………………

8、…………15分 x x x x x x x x 5.解:(1)直线的方程可化为, 直线的斜率,………………4分 因为,所以,当且仅当时等号成立. 所以,斜率的取值范围是. ……………………………………………………8分 (2)不能. …………………………………………………………………………………9分 由(Ⅰ)知的方程为,其中. ……………………………………10分 圆的圆心为,半径. …………………………………………………11分 圆心到直线的距离.由,得,即. 从

9、而可知,若与圆相交,则圆截直线所得的弦所对的圆心角小于. …………13分 所以不能将圆分割成弧长的比值为的两段弧. …………………………………………16分 6.解:(1)在等差数列{an}中,Sn,S2n-Sn,S3n-S2n,…成等差数列, ∴Sn+(S3n-S2n)=2(S2n-Sn) ∴S3n=3 S2n-3 Sn=60…………………………………………………………………5分 (2)SpSq=pq(a1+ap)(a1+aq)=pq[a+a1(ap+aq)+apaq] =pq(a+2a1am+apaq)<()2[a+2a1am+()2]

10、 =m2(a+2a1am+a)=[m(a1+am)]2 =S………………………………………………………………………10分 (3)设an=pn+q(p,q为常数),则ka-1=kp2n2+2kpqn+kq2-1 Sn+1=p(n+1)2+(n+1) S2n=2pn2+(p+2q)n ∴S2n-Sn+1=pn2+n-(p+q),…………………………………………………………12分 依题意有kp2n2+2kpqn+kq2-1= pn2+n-(p+q)对一切正整数n成立, ∴ 由①得,p=0或kp=; 若p=0代入②有q=0,而p=q=0不满足③, ∴p≠0 由kp=代入②, ∴3q=,q=-代入③得, -1=-(p-),将kp=代入得,∴ p=, 解得q=-,k=………………………………………………………………………………15分 故存在常数k=及等差数列an=n-使其满足题意……………………………………16分

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服