ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:14.49KB ,
资源ID:5977830      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5977830.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年高二数学排列组合知识点归纳.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年高二数学排列组合知识点归纳.docx

1、 2022高二数学排列组合知识点归纳排列组合公式/排列组合计算公式 排列P-和挨次有关 组合C-不牵涉到挨次的问题 排列分挨次,组合不分 例如把5本不同的书分给3个人,有几种分法.“排列“ 把5本书分给3个人,有几种分法“组合“ 1.排列及计算公式 从n个不同元素中,任取m(mn)个元素根据肯定的挨次排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的全部排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元

2、素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的全部组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/(n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为 n!/(n1!*n2!*.*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排

3、列(Pnm(n为下标,m为上标) Pnm=n(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 公式P是指排列,从N个元素取R个进展排列。公式C是指组合,从N个元素取R个,不进展排列。N-元素的总个数R参加选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应当为n*(n-1

4、)*(n-2).(n-r+1); 由于从n到(n-r+1)个数为n-(n-r+1)=r举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列挨次有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,明显不会消失988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应当有9-1种可能,个位数则应当只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,假如三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”

5、? A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求挨次的,属于“组合C”计算范畴。 上问题中,将全部的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参与一个课外小组;(2)每名学生都只参与一个课外小组,而且每个小组至多有一名学生参与.各有多少种不同方法? 解(1)由于每名学生都可以参与4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参与一个课外小组,而且每个小组至多有一名学生参与,因

6、此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进展计算. 例2排成一行,其中不排第一,不排其次,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、中的某一个,共3类,每一类中不同排法可采纳画“树图”的方式逐一排出: 符合题意的不同排法共有9种. 点评根据分“类”的思路,此题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3推断以下问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手?

7、 (2)高二年级数学课外小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参与省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法? 分析(1)由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与挨次有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与挨次无关,所以是组合问题.其他类似分析. (1)

8、是排列问题,共用了封信;是组合问题,共需握手(次). (2)是排列问题,共有(种)不同的选法;是组合问题,共有种不同的选法. (3)是排列问题,共有种不同的商;是组合问题,共有种不同的积. (4)是排列问题,共有种不同的选法;是组合问题,共有种不同的选法. 例4证明. 证明左式 右式. 等式成立. 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5化简. 解法一原式 解法二原式 点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两共性质,都使变形过程得以简化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可变为 , 原方程可化为. 即,解得 第六章排列组合、二项式定理 一、考纲要求 1.把握加法原理及乘法原理,并能用这两个原理分析解决一些简洁的问题. 2.理解排列、组合的意义,把握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简洁的问题. 3.把握二项式定理和二项式系数的性质,并能用它们计算和论证一些简洁问题. 二、学问构造 三、学问点、力量点提示 (一)加法原理乘法原理 说明加法原理、乘法原理是学习排列组合的根底,把握此两原理为处理排列、组合中有关问题供应了理论依据.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服