ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:1.07MB ,
资源ID:5959541      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5959541.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022-2023学年上海市虹口区数学九年级第一学期期末复习检测试题含解析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022-2023学年上海市虹口区数学九年级第一学期期末复习检测试题含解析.doc

1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1某市计划争取“全面改薄”专项资金120 000 0

2、00元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为()A12108B1.2108C1.2109D0.121092某闭合电路中,电源的电压为定值,电流I(A)与电阻R()成反比例图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为( )ABCD3已知点都在函数的图象上,则y1、y2、y3的大小关系是()Ay2y1y3By1y2y3Cy1y3y2Dy3y1y24如图,矩形OABC的顶点A、C分别在x、y轴上,反比例函数y(x0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E若四边形ODBE的面积为9,则k的值

3、为()A2BC3D5如图,在O中,若点C是 的中点,A=50,则BOC=()A40B45C50D606抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示下列叙述中:;关于的方程的两个根是;当时,随增大而增大正确的个数是( )A4B3C2D17如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A主视图B左视图C俯视图D主视图和俯视图8如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为( )A4B3C2D19如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A1B3C5

4、D1或510计算得()A1B1CD二、填空题(每小题3分,共24分)11如图,已知正方形OABC的三个顶点坐标分别为A (2,0),B (2,2),C (0,2),若反比例函数的图象与正方形OABC的边有交点,请写出一个符合条件的k值_12如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则的值是 13如图,从一块直径是的圆形铁皮上剪出一个圆心角是的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为_14如图,在ABC中,C=90,A=,AC=20,请用含的式子表示BC的长_ 15反比例函数的图象在一、三象限,则应满足_.16将抛物线向上平移1个单位后,再

5、向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是_17若,则的值是_.18若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是_三、解答题(共66分)19(10分)某学校在倡导学生大课间活动中,随机抽取了部分学生对“我最喜爱课间活动”进行了一次抽样调查,分别从打篮球、踢足球、自由活动、跳绳、其它等5个方面进行问卷调(每人只能选一项),根据调查结果绘制了如图的不完整统计图,请你根据图中信息,解答下列问题. (1)本次调查共抽取了学生 人;(2)求本次调查中喜欢踢足球人数;(3)若甲、乙两位同学通过抽签的方式确定自己填报的课间活动,则两位同学抽到同一运动的概率是多少?

6、20(6分)如图,四边形ABCD中,AB=AD,BAD=60,BCD=30,将AC绕着点A顺时针旋转60得AE,连接BE,CE(1)求证:ADCABE;(2)求证:(3)若AB=2,点Q在四边形ABCD内部运动,且满足,直接写出点Q运动路径的长度21(6分)如图,在中,是边上的一点,若,求证:. 22(8分)解方程(1)(用配方法)(2) (3)计算:23(8分)将四人随机分成甲、乙两组参加羽毛球比赛,每组两人(1)在甲组的概率是多少?(2)都在甲组的概率是多少?24(8分)京剧脸谱是京剧艺术独特的表现形式,现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸

7、”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率(图案为“红脸”的两张卡片分别记为、,图案为“黑脸”的卡片记为).25(10分)如图,已知直线的函数表达式为,它与轴、轴的交点分别为两点(1)若的半径为2,说明直线与的位置关系;(2)若的半径为2,经过点且与轴相切于点,求圆心的坐标;(3)若的内切圆圆心是点,外接圆圆心是点,请直接写出的长度26(10分)综合与实践: 如图,已知 中, (1)实践与操作: 作 的外接圆,连结 ,并在图中标明相应字母;(

8、尺规作图,保留作图痕迹, 不写作法) (2)猜想与证明: 若,求扇形的面积.参考答案一、选择题(每小题3分,共30分)1、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】120 000 0001.2108,故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、C【解析】设,那么点(3,2)满足这个函数解析式,k=32=1故

9、选C3、A【分析】根据反比例函数图象上点的坐标特征,将点分别代入函数,求得的,然后比较它们的大小【详解】解:把分别代入: ,故选:A【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键4、C【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出OCE、OAD、OABC的面积与|k|的关系,列出等式求出k值【详解】解:由题意得:E、M、D位于反比例函数图象上,则,过点M作MGy轴于点G,作MNx轴于点N,则SONMG|k|,又M为矩形ABCO对角线的交点,则S矩形ABCO4SONMG4|k|,由于函数图象在第一象限,k0,则,k1故选:C【点睛

10、】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|本知识点是中考的重要考点,同学们应高度关注5、A【解析】试题解析: 点C是 的中点, 故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.6、B【分析】由抛物线的对称轴是,可知系数之间的关系,由题意,与轴的一个交点坐标为,根据抛物线的对称性,求得抛物线与轴的一个交点坐标为,从而可判断抛物线与轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当时,代入解析式,可求得函数值,即可判断其的值是正数或负数.【详解】抛物线的对称轴是;正确,与轴的一个交点坐标为抛物线与与轴的

11、另一个交点坐标为关于的方程的两个根是;正确,当x=1时,y=;正确抛物线与轴有两个不同的交点,则错误;当时,随增大而减小当时,随增大而增大,错误;正确,错误故选:B.【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键.7、B【解析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图故选B8、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等

12、可求解【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(1,0)故横坐标为-1,故选D考点:二次函数的性质9、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用10、A【分析】根据题意对原式变形后,利用同分母分式的减法法则计算,约分即可得到结果【详解】解:=1故选:A【

13、点睛】本题考查分式的加减法,熟练掌握分式的加减法运算法则是解答本题的关键二、填空题(每小题3分,共24分)11、1(满足条件的k值的范围是0k4)【分析】反比例函数上一点 向x 、y 轴分别作垂线,分别交于y轴和x轴,则围成的矩形的面积为|k|,据此进一步求解即可.【详解】反比例函数图像与正方形有交点,当交于B点时,此时围成的矩形面积最大且为4,|k|最大为4,在第一象限,k为正数,即0k4,k的取值可以为:1.故答案为:1(满足条件的k值的范围是0k4).【点睛】本题主要考查了反比例函数中比例系数的相关运用,熟练掌握相关概念是解题关键.12、【解析】EC=2BE,得 ,由于AD/BC,得 1

14、3、【分析】根据题意可知扇形ABC围成圆锥后的底面周长就是弧BC的弧长,再根据弧长公式和圆周长公式来求解.【详解】解:作于点,连结OA、BC, BAC=90BC是直径,OB=OC, 圆锥的底面圆的半径故答案为:【点睛】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.14、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在RtABC中,A=,AC=20,=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.15、【分析】根据条件反比例函数的图象在一、三象限,可知k+20,即可求

15、出k的取值.【详解】解:反比例函数的图象在一、三象限, 0,k+20,故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k0,图象在二四象限时k0.16、y=(x+2)2-1【分析】根据函数图象的平移规律解答即可得到答案【详解】由题意得:平移后的函数解析式是,故答案为:.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.17、【分析】根据合比性质:,可得答案【详解】由合比性质,得,故答案为:【点睛】本题考查了比例的性质,利用合比性质是解题关键18、15【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为

16、一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=523=15【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.三、解答题(共66分)19、(1)50;(2)12;(3).【分析】(1)根据条形图和扇形图中打篮球的数据计算得出总人数;(2)用总人数减去其他组的人数即可得到踢足球的人数;(3)列表解答即可.【详解】(1)本次调查抽取的学生人数为: (人),故答案为:50;(2)本次调查中喜欢踢足球人数为:50-5-20-8-5=12(人);(3)列表如下:共有

17、25种等可能的情况,其中两位同学抽到同一运动的有5种,P(两位同学抽到同一运动的)= .【点睛】此题考查数据的计算,正确掌握根据部分计算得出总体的方法,能计算某部分的人数,会列树状图或表格求概率.20、(1)证明见解析;(2)证明见解析;(3)【解析】(1)推出DAC=BAE,则可直接由SAS证明ADCABE;(2)证明BCE是直角三角形,再证DC=BE,AC=CE即可推出结论;(3)如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,证ADQABF,由勾股定理的逆定理证FBQ=90,求出DQB=150,确定点Q的路径为过B,D,C三点的圆上,求

18、出的长即可【详解】(1)证明:CAE=DAB=60,CAE-CAB=DAB-CAB,DAC=BAE,又AD=AB,AC=AE,ADCABE(SAS);(2)证明:在四边形ABCD中,ADC+ABC=360-DAB-DCB=270,ADCABE,ADC=ABE,CD=BE,ABC+ABE=ABC+ADC=270,CBE=360-(ABC+ABE)=90,CE2=BE2+BC2,又AC=AE,CAE=60,ACE是等边三角形,CE=AC=AE,AC2=DC2+BC2;(3)解:如图2,设Q为满足条件的点,将AQ绕着点A顺时针旋转60度得AF,连接QF,BF,QB,DQ,AF,则DAQ=BAF,AQ

19、=QF,AQF为等边三角形,又AD=AB,ADQABF(SAS),AQ=FQ,BF=DQ,AQ2=BQ2+DQ2,FQ2=BQ2+BF2,FBQ=90,AFB+AQB=360-(QAF+FBQ)=210,AQD+AQB=210,DQB=360-(AQD+AQB)=150,点Q的路径为过B,D,C三点的圆上,如图2,设圆心为O,则BOD=2DCB=60,连接DB,则ODB与ADB为等边三角形,DO=DB=AB=2,点Q运动的路径长为:【点睛】本题考查了旋转的性质,等边三角形的性质,四边形的内角和,勾股定理的逆定理,圆的有关性质及计算等,综合性较强,解题关键是能够熟练掌握并灵活运用圆的有关性质21

20、、见解析【分析】根据相似三角形的判定,由题意可得,进而根据相似三角形的性质,可得,推论即可得出结论.【详解】证明:,即.【点睛】本题主要考察了相似三角形的判定以及性质,灵活运用相关性质是解题的关键.22、(1),;(2),;(3)【分析】(1)方程整理配方后,开方即可求出解;(2)把方程左边进行因式分解,求方程的解;(3)根据二次根式、特殊角的三角函数值、0次幂、负整数指数幂的运算法则计算即可【详解】(1),方程整理得:,配方得:,即,开方得:,解得:,;(2),即,或,解得:, ;(3)【点睛】本题主要考查了解一元二次方程配方法、因式分解法以及实数的混合运算,特殊角的三角函数值,熟练掌握一元

21、二次方程的各种解法以及熟记特殊角的三角函数值是解题的关键23、(1)(2)【解析】解:所有可能出现的结果如下:甲组乙组结果()()()()()()总共有6种结果,每种结果出现的可能性相同(1)所有的结果中,满足在甲组的结果有3种,所以在甲组的概率是, 2分(2)所有的结果中,满足都在甲组的结果有1种,所以都在甲组的概率是利用表格表示出所有可能的结果,根据在甲组的概率=,都在甲组的概率=24、抽出的两张卡片上的图案都是“红脸”的概率是.【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可【详解】画树状图如图由树状图可知,所有可能出现的结果共有

22、9种,其中两次抽取的卡片都是“红脸”的结果有4种,所以(两张都是“红脸”) 答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】此题主要考查了概率的求法用到的知识点为树状图和概率的求法,概率=所求情况数与总情况数之比,关键是根据题意画出树状图25、(1)直线AB与O的位置关系是相离;(2)(,2)或(-,2);(3)【分析】(1)由直线解析式求出A(-4,0),B(0,3),得出OB=3,OA=4,由勾股定理得出AB=5,过点O作OCAB于C,由三角函数定义求出OC=2,即可得出结论;(2)分两种情况:当点P在第一象限,连接PB、PF,作PCOB于C,则四边形OCPF是矩形,得出OC=PF

23、=BP=2,BC=OB-OC=1,由勾股定理得出PC=,即可得出答案;当点P在的第二象限,根据对称性可得出此时点P的坐标;(3)设M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,则四边形OCMD是正方形,DEAB,BE=BD,得出MC=MD=ME=OD=(OA+OB-AB)=1,求出BE=BD=OB-OD=2,由直角三角形的性质得出ABO外接圆圆心N在AB上,得出AN=BN=AB=,NE=BN-BE=,在RtMEN中,由勾股定理即可得出答案【详解】解:(1)直线l的函数表达式为y=x+3, 当x=0时,y=3;当y=0时,x=4;A(4,0),B(0,3), OB=3,O

24、A=4,AB=5, 过点O作OCAB于C,如图1所示:sinBAO=,OC=2, 直线AB与O的位置关系是相离;(2)如图2所示,分两种情况:当点P在第一象限时,连接PB、PF,作PCOB于C,则四边形OCPF是矩形,OC=PF=BP=2, BC=OBOC=32=1,PC=, 圆心P的坐标为:(,2); 当点P在第二象限时,由对称性可知,在第二象限圆心P的坐标为:(-,2)综上所知,圆心P的坐标为(,2)或(-,2)(3)设M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图3所示:则四边形OCMD是正方形,DEAB,BE=BD,MC=MD=ME=OD=(OA+OBAB)

25、=(4+35)=1,BE=BD=OBOD=31=2,AOB=90,ABO外接圆圆心N在AB上,AN=BN=AB=,NE=BNBE=2=,在RtMEN中,MN=【点睛】本题是圆的综合题目,考查了直线与圆的位置关系、直角三角形的内切圆与外接圆、勾股定理、切线长定理、正方形的判定与性质、矩形的判定与性质等知识;本题综合性强,熟练掌握直线与圆的位置关系,根据题意画出图形是解题的关键26、(1)答案见解析;(2)【分析】(1)直角三角形外接圆的圆心在斜边中点,做出AB的垂直平分线找到斜边中点O,然后连接OC即可;(2)根据同弧所对的圆周角是圆心角的一半求出圆心角的度数,然后利用扇形面积公式进行求解.【详解】解:(1)如图所示:外接圆与线段为所求. 【点睛】本题考查尺规作图和扇形面积的求法,掌握直角三角形外接圆的圆心是斜边中点,从而做出斜边的垂直平分线,熟记扇形面积公式并正确计算是本题的解题关键.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服