1、27.2相似三角形(1)一 教学目标:1 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。2 能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二 教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明三 教学过程:(一) 类比联想,动手实验1 回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边
2、、对应角相等)。2 让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系? (二)直观演示,展示新知 A/1 相似三角形的定义 C将上面所截得的三角形移出,记为 ABC,原三角形记为 ABC,因此有A=A,B=B, C,即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。 定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 2表示方法: 教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。3 相似三
3、角形的性质:相似三角形的对应角相等,对应边成比例。4 相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调: ABC与 ABC的相似比是k,则 ABC与 AB C的相似比是。练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:所有的等腰三角形都相似。所有的等边三角形都相似。所有的直角三角形都相似。所有的等腰直角三角形都相似。教师示范一个规范过程,让学生模仿,学会用定义来解决问题。 A(三)范例研讨,迁移练习: 1例1。如图,在 ABC中, D E DE/BC,D。E分别在AB,AC上。 求证:ADEABC B C F 师生共同探讨:(1) 目前要证明两
4、个三角形相似只能根据什么?(定义)(2) 根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3) ADE与ABC满足“对应角相等”吗?为什么?(4) 对应边成比例,由“DE/BC”的条件可得到怎样的比例式? (5) 本题的关键归结为“只要证明什么”?(6) 根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF/AB) 教师板演证明过程。2如图,DE/BC,D、E分别在BA、CA的延长线上,D EADE与ABC 相似吗? A相似C B 由此得到预备定理:3定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。4例2
5、,如图,D为ABC的AB边上的一点,过点D作 C DE/AC,交BC于E,已知BE:EC=2:1,AC=6CM, 求DE的长。5、练习:课后1、2、36、课后拓展(机动): (1)如图甲,已知 ABD ACB,则AD:AB= : , AB:BD= : ,如果AD=2,DC=1,那么AB= (2),如图乙,在 ABC中,AD是角平分线,求证: 。 A A DB C B D C 图甲 图乙 五、归纳总结、布置作业:1 今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。作业- 3 -