ImageVerifierCode 换一换
格式:DOC , 页数:108 ,大小:17.67MB ,
资源ID:5951369      下载积分:18 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5951369.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(历年高考数学真题全国卷整理版).doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

历年高考数学真题全国卷整理版).doc

1、2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(2013大纲全国,理1)设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()A3 B4 C5 D62(2013大纲全国,理2)()A8 B8 C8i D8i3(2013大纲全国,理3)已知向量m(1,1),n(2,2),若(mn)(mn),则()A4 B3 C2 D14(2013大纲全国,理4)已知函数f(x)的定义域为(1,0),则函数f(2x1)的定义域为()A(1,1) B C(1,0) D5(20

2、13大纲全国,理5)函数f(x)(x0)的反函数f1(x)()A(x0) B(x0) C2x1(xR) D2x1(x0)6(2013大纲全国,理6)已知数列an满足3an1an0,a2,则an的前10项和等于()A6(1310) B(1310) C3(1310) D3(1310)7(2013大纲全国,理7)(1x)8(1y)4的展开式中x2y2的系数是()A56 B84 C112 D1688(2013大纲全国,理8)椭圆C:的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是2,1,那么直线PA1斜率的取值范围是()A B C D9(2013大纲全国,理9)若函数f(x)x2a

3、x在是增函数,则a的取值范围是()A1,0 B1,) C0,3 D3,)10(2013大纲全国,理10)已知正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于()A B C D11(2013大纲全国,理11)已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A,B两点若,则k()A B C D212(2013大纲全国,理12)已知函数f(x)cos xsin 2x,下列结论中错误的是()Ayf(x)的图像关于点(,0)中心对称 Byf(x)的图像关于直线对称Cf(x)的最大值为 Df(x)既是奇函数,又是周期函数二、填空题:本大题共

4、4小题,每小题5分13(2013大纲全国,理13)已知是第三象限角,sin ,则cot _.14(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有_种(用数字作答)15(2013大纲全国,理15)记不等式组所表示的平面区域为D.若直线ya(x1)与D有公共点,则a的取值范围是_16(2013大纲全国,理16)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK,且圆O与圆K所在的平面所成的一个二面角为60,则球O的表面积等于_三、解答题:解答应写出文字说明,证明过程或演算步骤17(2013大纲全国,理17)(本小题满分10分)等差数列an的前n项和为Sn

5、.已知S3,且S1,S2,S4成等比数列,求an的通项公式18(2013大纲全国,理18)(本小题满分12分)设ABC的内角A,B,C的对边分别为a,b,c,(abc)(abc)ac.(1)求B;(2)若sin Asin C,求C19(2013大纲全国,理19)(本小题满分12分)如图,四棱锥PABCD中,ABCBAD90,BC2AD,PAB和PAD都是等边三角形 (1)证明:PBCD;(2)求二面角APDC的大小20(2013大纲全国,理20)(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局

6、比赛的结果相互独立,第1局甲当裁判(1)求第4局甲当裁判的概率;(2)X表示前4局中乙当裁判的次数,求X的数学期望21(2013大纲全国,理21)(本小题满分12分)已知双曲线C:(a0,b0)的左、右焦点分别为F1,F2,离心率为3,直线y2与C的两个交点间的距离为.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列22(2013大纲全国,理22)(本小题满分12分)已知函数f(x).(1)若x0时,f(x)0,求的最小值;(2)设数列an的通项,证明:a2nanln 2.2013年普通高等学校夏季

7、招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1答案:B解析:由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素故选B.2答案:A解析:.故选A.3答案:B解析:由(mn)(mn)?|m|2|n|20?(1)21(2)240?3.故选B.4 答案:B解析:由题意知12x10,则1x.故选B.5答案:A解析:由题意知2y?x(y0),因此f1(x)(x0)故选A.6答案:C解析:3an1an0,an1.数列an是以为公比的等比数列a2,a14.S103(1310)故选C.7答

8、案:D解析:因为(1x)8的展开式中x2的系数为,(1y)4的展开式中y2的系数为,所以x2y2的系数为.故选D.8 答案:B解析:设P点坐标为(x0,y0),则,于是.故.2,1,.故选B.9答案:D解析:由条件知f(x)2xa0在上恒成立,即在上恒成立函数在上为减函数,.a3.故选D.10 答案:A解析:如下图,连结AC交BD于点O,连结C1O,过C作CHC1O于点H.CH平面C1BD,HDC为CD与平面BDC1所成的角设AA12AB2,则,.由等面积法,得C1OCHOCCC1,即,.sinHDC.故选A.11答案:D解析:由题意知抛物线C的焦点坐标为(2,0),则直线AB的方程为yk(x

9、2),将其代入y28x,得k2x24(k22)x4k20.设A(x1,y1),B(x2,y2),则x1x2,x1x24.由,(x12,y12)(x22,y22)0.(x12)(x22)(y12)(y22)0,即x1x22(x1x2)4y1y22(y1y2)40.由解得k2.故选D.12答案:C解析:由题意知f(x)2cos2xsin x2(1sin2x)sin x.令tsin x,t1,1,则g(t)2(1t2)t2t2t3.令g(t)26t20,得.当t1时,函数值为0;当时,函数值为;当时,函数值为.g(t)max,即f(x)的最大值为.故选C.二、填空题:本大题共4小题,每小题5分13答

10、案:解析:由题意知cos .故cot .14答案:480解析:先排除甲、乙外的4人,方法有种,再将甲、乙插入这4人形成的5个间隔中,有种排法,因此甲、乙不相邻的不同排法有(种)15答案:解析:作出题中不等式组表示的可行域如图中阴影部分所示直线ya(x1)过定点C(1,0),由图并结合题意可知,kAC4,要使直线ya(x1)与平面区域D有公共点,则a4.16答案:16解析:如下图,设MN为两圆的公共弦,E为MN的中点,则OEMN,KEMN,结合题意可知OEK60.又MNR,OMN为正三角形OE.又OKEK,OEsin 60.R2.S4R216.三、解答题:解答应写出文字说明,证明过程或演算步骤1

11、7解:设an的公差为d.由S3得3a2,故a20或a23.由S1,S2,S4成等比数列得S1S4.又S1a2d,S22a2d,S44a22d,故(2a2d)2(a2d)(4a22d)若a20,则d22d2,所以d0,此时Sn0,不合题意;若a23,则(6d)2(3d)(122d),解得d0或d2.因此an的通项公式为an3或an2n1.18解:(1)因为(abc)(abc)ac,所以a2c2b2ac.由余弦定理得cos B,因此B120.(2)由(1)知AC60,所以cos(AC)cos Acos Csin Asin Ccos Acos Csin Asin C2sin Asin Ccos(AC

12、)2sin Asin C,故AC30或AC30,因此C15或C45.19(1)证明:取BC的中点E,连结DE,则ABED为正方形过P作PO平面ABCD,垂足为O.连结OA,OB,OD,OE.由PAB和PAD都是等边三角形知PAPBPD,所以OAOBOD,即点O为正方形ABED对角线的交点,故OEBD,从而PBOE.因为O是BD的中点,E是BC的中点,所以OECD.因此PBCD.(2)解法一:由(1)知CDPB,CDPO,PBPOP,故CD平面PBD.又PD平面PBD,所以CDPD.取PD的中点F,PC的中点G,连结FG,则FGCD,FGPD.连结AF,由APD为等边三角形可得AFPD.所以AF

13、G为二面角APDC的平面角连结AG,EG,则EGPB.又PBAE,所以EGAE.设AB2,则AE,EG1,故AG3.在AFG中,FG,AG3,所以cosAFG.因此二面角APDC的大小为.解法二:由(1)知,OE,OB,OP两两垂直以O为坐标原点,的方向为x轴的正方向建立如图所示的空间直角坐标系Oxyz.设|2,则A(,0,0),D(0,0),C(,0),P(0,0,)(,),(0,)(,0,),(,0)设平面PCD的法向量为n1(x,y,z),则n1(x,y,z)(,)0,n1(x,y,z)(0,)0,可得2xyz0,yz0.取y1,得x0,z1,故n1(0,1,1)设平面PAD的法向量为n

14、2(m,p,q),则n2(m,p,q)(,0,)0,n2(m,p,q)(,0)0,可得mq0,mp0.取m1,得p1,q1,故n2(1,1,1)于是cosn1,n2.由于n1,n2等于二面角APDC的平面角,所以二面角APDC的大小为.20解:(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局甲参加比赛时,结果为甲负”,A表示事件“第4局甲当裁判”则AA1A2.P(A)P(A1A2)P(A1)P(A2).(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事

15、件“第3局乙参加比赛时,结果为乙负”则P(X0)P(B1B2A3)P(B1)P(B2)P(A3),P(X2)P(B3)P()P(B3),P(X1)1P(X0)P(X2),EX0P(X0)1P(X1)2P(X2).21(1)解:由题设知3,即9,故b28a2.所以C的方程为8x2y28a2.将y2代入上式,求得.由题设知,解得a21.所以a1,b.(2)证明:由(1)知,F1(3,0),F2(3,0),C的方程为8x2y28.由题意可设l的方程为yk(x3),代入并化简得(k28)x26k2x9k280.设A(x1,y1),B(x2,y2),则x11,x21,x1x2,x1x2.于是|AF1|(

16、3x11),|BF1|3x21.由|AF1|BF1|得(3x11)3x21,即x1x2.故,解得k2,从而x1x2.由于|AF2|13x1,|BF2|3x21,故|AB|AF2|BF2|23(x1x2)4,|AF2|BF2|3(x1x2)9x1x2116.因而|AF2|BF2|AB|2,所以|AF2|,|AB|,|BF2|成等比数列22(1)解:由已知f(0)0,f(x),f(0)0.若,则当0x2(12)时,f(x)0,所以f(x)0.若,则当x0时,f(x)0,所以当x0时,f(x)0.综上,的最小值是.(2)证明:令.由(1)知,当x0时,f(x)0,即取,则.于是ln 2nln nln

17、 2.所以.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(2013课标全国,理1)已知集合Ax|x22x0,Bx|x,则()AAB BABR CBA DAB2(2013课标全国,理2)若复数z满足(34i)z|43i|,则z的虚部为()A4 B C4 D3(2013课标全国,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大在下面的抽样方法中,

18、最合理的抽样方法是()A简单随机抽样 B按性别分层抽样 C按学段分层抽样 D系统抽样4(2013课标全国,理4)已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay By Cy Dyx5(2013课标全国,理5)执行下面的程序框图,如果输入的t1,3,则输出的s属于()A3,4 B5,2 C4,3 D2,56(2013课标全国,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()Acm3 Bcm3Ccm3 Dcm37(2013课标全国,理7)设等差数列an

19、的前n项和为Sn,若Sm12,Sm0,Sm13,则m()A3 B4 C5 D68(2013课标全国,理8)某几何体的三视图如图所示,则该几何体的体积为()A168 B88 C1616 D8169(2013课标全国,理9)设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b.若13a7b,则m()A5 B6 C7 D810(2013课标全国,理10)已知椭圆E:(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点若AB的中点坐标为(1,1),则E的方程为()A B C D11(2013课标全国,理11)已知函数f(x)若|f(x)|ax

20、,则a的取值范围是()A(,0 B(,1 C2,1 D2,012(2013课标全国,理12)设AnBnCn的三边长分别为an,bn,cn,AnBnCn的面积为Sn,n1,2,3,.若b1c1,b1c12a1,an1an,bn1,cn1,则()ASn为递减数列 BSn为递增数列CS2n1为递增数列,S2n为递减数列 DS2n1为递减数列,S2n为递增数列第卷本卷包括必考题和选考题两部分第(13)题第(21)题为必考题,每个试题考生都必须做答第(22)题第(24)题为选考题,考生根据要求做答二、填空题:本大题共4小题,每小题5分13(2013课标全国,理13)已知两个单位向量a,b的夹角为60,c

21、ta(1t)b.若bc0,则t_.14(2013课标全国,理14)若数列an的前n项和,则an的通项公式是an_.15(2013课标全国,理15)设当x时,函数f(x)sin x2cos x取得最大值,则cos _.16(2013课标全国,理16)若函数f(x)(1x2)(x2axb)的图像关于直线x2对称,则f(x)的最大值为_三、解答题:解答应写出文字说明,证明过程或演算步骤17(2013课标全国,理17)(本小题满分12分)如图,在ABC中,ABC90,AB,BC1,P为ABC内一点,BPC90. (1)若PB,求PA;(2)若APB150,求tanPBA.18(2013课标全国,理18

22、)(本小题满分12分)如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,ABCB,求直线A1C与平面BB1C1C所成角的正弦值19(2013课标全国,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率

23、都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望20(2013课标全国,理20)(本小题满分12分)已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21(2013课标全国,理21)(本小题满分12分)设函数f(x)x2axb,g(x)ex(cxd)若曲线yf(x)和

24、曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x2.(1)求a,b,c,d的值;(2)若x2时,f(x)kg(x),求k的取值范围请考生在第(22)、(23)、(24)三题中任选一题做答注意:只能做所选定的题目如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑22(2013课标全国,理22)(本小题满分10分)选修41:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DBDC;(2)设圆的半径为1,BC,延长CE交AB于点F,求BCF外接圆的半径23(2013课标全

25、国,理23)(本小题满分10分)选修44:坐标系与参数方程已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2sin .(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(0,02)24(2013课标全国,理24)(本小题满分10分)选修45:不等式选讲:已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)g(x)的解集;(2)设a1,且当x时,f(x)g(x),求a的取值范围2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)第卷一、选择题:本大题共12小题,每小

26、题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1答案:B解析:x(x2)0,x0或x2.集合A与B可用图象表示为:由图象可以看出ABR,故选B.2 答案:D解析:(34i)z|43i|,.故z的虚部为,选D.3答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样4答案:C解析:,.a24b2,.渐近线方程为.5答案:A解析:若t1,1),则执行s3t,故s3,3)若t1,3,则执行s4tt2,其对称轴为t2.故当t2时,s取得最大值4.当t1或3时,s取得最小值3,则s3,4综上可知,输出的s3,4故选A.6答案:A解析:设球半径为R,由题可知R,R2,正方体棱长一

27、半可构成直角三角形,即OBA为直角三角形,如图BC2,BA4,OBR2,OAR,由R2(R2)242,得R5,所以球的体积为(cm3),故选A.7答案:C解析:Sm12,Sm0,Sm13,amSmSm10(2)2,am1Sm1Sm303.dam1am321.Smma110,.又am1a1m13,.m5.故选C.8答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为r24422816.故选A.9答案:B解析:由题意可知,a,b,又13a7b,即.解得m6.故选B.10 答案:D解析:设A(x1,y

28、1),B(x2,y2),A,B在椭圆上,得,即,AB的中点为(1,1),y1y22,x1x22,而kAB,.又a2b29,a218,b29.椭圆E的方程为.故选D.11答案:D解析:由y|f(x)|的图象知:当x0时,yax只有a0时,才能满足|f(x)|ax,可排除B,C.当x0时,y|f(x)|x22x|x22x.故由|f(x)|ax得x22xax.当x0时,不等式为00成立当x0时,不等式等价于x2a.x22,a2.综上可知:a2,012答案:B第卷本卷包括必考题和选考题两部分第(13)题第(21)题为必考题,每个试题考生都必须做答第(22)题第(24)题为选考题,考生根据要求做答二、填

29、空题:本大题共4小题,每小题5分13答案:2解析:cta(1t)b,bctab(1t)|b|2.又|a|b|1,且a与b夹角为60,bc,0t|a|b|cos 60(1t),01t.t2.14答案:(2)n1解析:,当n2时,.,得,即2.a1S1,a11.an是以1为首项,2为公比的等比数列,an(2)n1.15答案:解析:f(x)sin x2cos x,令cos ,sin ,则f(x)sin(x),当x2k(kZ)时,sin(x)有最大值1,f(x)有最大值,即2k(kZ),所以cos sin .16答案:16解析:函数f(x)的图像关于直线x2对称,f(x)满足f(0)f(4),f(1)

30、f(3),即解得f(x)x48x314x28x15.由f(x)4x324x228x80,得x12,x22,x32.易知,f(x)在(,2)上为增函数,在(2,2)上为减函数,在(2,2)上为增函数,在(2,)上为减函数f(2)1(2)2(2)28(2)15(8)(8)806416.f(2)1(2)2(2)28(2)153(41615)9.f(2)1(2)2(2)28(2)15(8)(8)806416.故f(x)的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤17解:(1)由已知得PBC60,所以PBA30.在PBA中,由余弦定理得PA2.故PA.(2)设PBA,由已知得PBs

31、in .在PBA中,由正弦定理得,化简得cos 4sin .所以tan ,即tanPBA.18(1)证明:取AB的中点O,连结OC,OA1,A1B.因为CACB,所以OCAB.由于ABAA1,BAA160,故AA1B为等边三角形,所以OA1AB.因为OCOA1O,所以AB平面OA1C.又A1C平面OA1C,故ABA1C.(2)解:由(1)知OCAB,OA1AB.又平面ABC平面AA1B1B,交线为AB,所以OC平面AA1B1B,故OA,OA1,OC两两相互垂直以O为坐标原点,的方向为x轴的正方向,|为单位长,建立如图所示的空间直角坐标系Oxyz.由题设知A(1,0,0),A1(0,0),C(0

32、,0,),B(1,0,0)则(1,0,),(1,0),(0,)设n(x,y,z)是平面BB1C1C的法向量,则即可取n(,1,1)故cosn,.所以A1C与平面BB1C1C所成角的正弦值为.19解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与A2B2互斥,所以P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2).(2)X可能的取值为400,500,80

33、0,并且P(X400),P(X500),P(X800).所以X的分布列为X400500800PEX506.25.20解:由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2.所以当圆P的半径最长时,其方程为(x2)

34、2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|.若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得,解得k.当k时,将代入,并整理得7x28x80,解得x1,2.所以|AB|.当时,由图形的对称性可知|AB|.综上,|AB|或|AB|.21解:(1)由已知得f(0)2,g(0)2,f(0)4,g(0)4.而f(x)2xa,g(x)ex(cxdc),故b2,d2,a4,dc4.从而a4,b2,c2,d2.(2)由(1)知,f(x)x24x2,g(x)2ex(x1)设函数F(x)kg(x)f(x)2ke

35、x(x1)x24x2,则F(x)2kex(x2)2x42(x2)(kex1)由题设可得F(0)0,即k1.令F(x)0得x1ln k,x22.若1ke2,则2x10.从而当x(2,x1)时,F(x)0;当x(x1,)时,F(x)0.即F(x)在(2,x1)单调递减,在(x1,)单调递增故F(x)在2,)的最小值为F(x1)而F(x1)2x124x12x1(x12)0.故当x2时,F(x)0,即f(x)kg(x)恒成立若ke2,则F(x)2e2(x2)(exe2)从而当x2时,F(x)0,即F(x)在(2,)单调递增而F(2)0,故当x2时,F(x)0,即f(x)kg(x)恒成立若ke2,则F(

36、2)2ke222e2(ke2)0.从而当x2时,f(x)kg(x)不可能恒成立综上,k的取值范围是1,e2请考生在第(22)、(23)、(24)三题中任选一题做答注意:只能做所选定的题目如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑22 (1)证明:连结DE,交BC于点G.由弦切角定理得,ABEBCE.而ABECBE,故CBEBCE,BECE.又因为DBBE,所以DE为直径,DCE90,由勾股定理可得DBDC.(2)解:由(1)知,CDEBDE,DBDC,故DG是BC的中垂线,所以BG.设DE的中点为O,连结BO,则BOG60.从而ABEBCECBE30

37、,所以CFBF,故RtBCF外接圆的半径等于.23解:(1)将消去参数t,化为普通方程(x4)2(y5)225,即C1:x2y28x10y160.将代入x2y28x10y160得28cos 10sin 160.所以C1的极坐标方程为28cos 10sin 160.(2)C2的普通方程为x2y22y0.由解得或所以C1与C2交点的极坐标分别为,.24解:(1)当a2时,不等式f(x)g(x)化为|2x1|2x2|x30.设函数y|2x1|2x2|x3,则y其图像如图所示从图像可知,当且仅当x(0,2)时,y0.所以原不等式的解集是x|0x2(2)当x时,f(x)1a.不等式f(x)g(x)化为1ax3.所以xa2对x都成立故a2,即.从而a的取值范围是.2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1(2013课标全国,理1)已知集合Mx|(x1)24,xR,N1,0,1,2,3,则MN()A0,1,2 B1,0,1,2 C1,0,2,3 D0,1,2,32(2013课标全国,理2)设复数z满足(1i)z2i,则z()A1i B1I C1i D1i3(2013课标全国,理3)等比数列an的前n项和为Sn.已知S3a210a1,a59,则a1()A

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服