ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:120.51KB ,
资源ID:5888301      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5888301.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第八章第七节课时限时检测.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第八章第七节课时限时检测.doc

1、(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分)1已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点P(m,2)到焦点的距离为4,则m的值为()A4B2C4或4 D12或2解析:设标准方程为x22py(p0),由定义知P到准线距离为4,故24,p4,方程为x28y,代入P点坐标得m4.答案:C2(2011东北三校)抛物线y28x的焦点到双曲线1的渐近线的距离为()A1 B.C. D.解析:由题意可知,抛物线y28x的焦点为(2,0),双曲线1的渐近线为yx,所以焦点到双曲线的渐近线的距离为1.答案:A3过点(0,1)作直线,使它与抛物线y24x仅有一个公共点,这样的

2、直线有()A1条 B2条C3条 D4条解析:结合图形分析可知,满足题意的直线共有3条:直线x0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x0)答案:C4已知过抛物线y26x焦点的弦长为12,则此弦所在直线的倾斜角是()A.或 B.或C.或 D.解析:由焦点弦长公式|AB|得12,sin,或.答案:B5(2011济南第二次诊断)设斜率为2的直线l过抛物线y2ax(a0)的焦点F,且和y轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线的方程为()Ay24x By28xCy24x Dy28x解析:由题可知抛物线焦点坐标为(,0),于是过焦点且斜率为2的直

3、线的方程为y2(x),令x0,可得A点坐标为(0,),所以SOAF4,a8.答案:B6已知抛物线y24x上两个动点B、C和点A(1,2),且BAC90,则动直线BC必过定点()A(2,5) B(2,5)C(5,2) D(5,2)解析:设B(,y1),C(,y2),BC的中点为D(x0,y0),则y1y22y0,直线BC:,即:4x2y0yy1y20;又0,y1y24y020,代入式得:2(x5)y0(y2)0,则动直线BC恒过x50与y20的交点(5,2)答案:C二、填空题(共3个小题,每小题5分,满分15分)7在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4)

4、,则该抛物线的方程是_解析:由题意设抛物线的方程为y22ax(a0),由于其过点P(2,4),所以422a2a4,故该抛物线的方程是y28x.答案:y28x8若抛物线y22px的焦点与双曲线1的右焦点重合,则p的值为_解析:双曲线1的右焦点F(3,0)是抛物线y22px的焦点,所以3,p6.答案:69(2011南京调研)已知点M是抛物线y24x上的一点,F为抛物线的焦点,A在圆C:(x4)2(y1)21上,则|MA|MF|的最小值为_解析:依题意得|MA|MF|(|MC|1)|MF|(|MC|MF|)1,由抛物线的定义知|MF|等于点M到抛物线的准线x1的距离,结合图形不难得知,|MC|MF|

5、的最小值等于圆心C(4,1)到抛物线的准线x1的距离,即为5,因此所求的最小值为4.答案:4三、解答题(共3个小题,满分35分)10已知动圆过定点P(1,0),且与定直线l:x1相切,点C在l上(1)求动圆圆心的轨迹M的方程;(2)设过点P,且斜率为的直线与曲线M相交于A、B两点问ABC能否为正三角形?若能,求出C点的坐标;若不能,说明理由解:(1)依题意,曲线M是以点P为焦点,直线l为准线的抛物线,所以曲线M的方程为y24x.如图所示 (2)由题意得,直线AB的方程为y(x1),由消y得3x210x30.解得A(,),B(3,2)若ABC能为正三角形,设C(1,y),则|AC|AB|BC|,

6、即组成的方程组无解,因此直线l上不存在点C使ABC是正三角形11(2010淄博模拟)在平面直角坐标系xOy中,直线l与抛物线y24x相交于不同的A、B两点(1)如果直线l过抛物线的焦点,求的值;(2)如果4,证明直线l必过一定点,并求出该定点解:(1)由题意:抛物线焦点为(1,0),设l:xty1,代入抛物线y24x,消去x得y24ty40,设A(x1,y1),B(x2,y2),则y1y24t,y1y24,x1x2y1y2(ty11)(ty21)y1y2t2y1y2t(y1y2)1y1y24t24t2143.(2)设l:xtyb代入抛物线y24x,消去x得y24ty4b0,设A(x1,y1),

7、B(x2,y2),则y1y24t,y1y24b,x1x2y1y2(ty1b)(ty2b)y1y2t2y1y2bt(y1y2)b2y1y24bt24bt2b24bb24b.令b24b4,b24b40,b2,直线l过定点(2,0)若4,则直线l必过一定点12.如图:直线yx与抛物线yx24交于A、B两点,直线l与直线yx和y5分别交于M、Q,且0,()(1)求点Q的坐标;(2)当点P为抛物线上且位于线段AB下方(含点A、B)的动点时,求OPQ面积的最大值解:(1)联立,解得或,即A(4,2),B(8,4)0,QMAB,又(),M是AB的中点,即M(2,1)l是线段AB的垂直平分线,又kAB,l的方程为y12(x2),即2xy50,令y5,得x5,Q(5,5)(2)直线OQ的方程为:xy0.由题意可设P(x,x24),4x8,且O、P、Q不共线,则点P到直线OQ的距离为:d|x28x32|.又|OQ|5,SOPQ|OQ|d|x28x32|(x4)248|,其中x4,8,且O、P、Q不共线,令f(x)(x4)248,则当x4,8时,函数f(x)单调递增又当x4时,|x28x32|48,当x8时,|x28x32|96.当x8时,(SQPO)max9630.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服