ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:145.01KB ,
资源ID:5884949      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5884949.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第八章第六节课时限时检测.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第八章第六节课时限时检测.doc

1、(时间60分钟,满分80分)一、选择题(共6个小题,每小题5分,满分30分)1已知焦点在x轴上的双曲线的渐近线方程是y4x,则该双曲线的离心率是()A.B.C. D.解析:由题意知,4,则双曲线的离心率e.答案:A2(2010深圳一模)若双曲线过点(m,n)(mn0),且渐近线方程为yx,则双曲线的焦点()A在x轴上 B在y轴上C在x轴或y轴上 D无法判断是否在坐标轴上解析:mn0,点(m,n)在第一象限且在直线yx的下方,故焦点在x轴上答案:A3设F1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|PF2|,则PF1F2的面积等于()A4 B8C24 D48解析:由P是

2、双曲线上的一点和3|PF1|4|PF2|可知,|PF1|PF2|2,解得|PF1|8,|PF2|6,又|F1F2|2c10,所以三角形PF1F2为直角三角形,所以PF1F2的面积S6824.答案:C4(2010日照一模)设双曲线1(a0,b0)的离心率为,且它的一条准线与抛物线y24x的准线重合,则此双曲线的方程为()A.1 B.1C.1 D.1解析:抛物线y24x的准线方程为x1,由题意,得:解得,a23,b26,故所求双曲线的方程为1.答案:C5(2010宝鸡模拟)P是双曲线1(a0,b0)上的点,F1,F2是其焦点,双曲线的离心率是,且0,若F1PF2的面积是9,则ab的值等于()A4

3、B7C6 D5解析:设|PF1|x,|PF2|y,则xy18,x2y24c2,故4a2(xy)24c236,又,c5,a4,b3,得ab7.答案:B6设F1、F2分别为双曲线1(a0,b0)的左、右焦点若在双曲线右支上存在点P,满足|PF2|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()A3x4y0 B3x5y0C4x3y0 D5x4y0解析:设PF1的中点为M,由|PF2|F1F2|,得F2MPF1,即|F2M|2a,在RtF1F2M中,|F1M|2b,故|PF1|4b,根据双曲线定义4b2c2a,即2bac,即(2ba)2a2b2,即3b24ab0,即

4、3b4a,故双曲线的渐近线方程是yx,即yx,即4x3y0.答案:C二、填空题(共3个小题,每小题5分,满分15分)7如图,椭圆,与双曲线,的离心率分别为e1,e2,e3,e4,其大小关系为_解析:椭圆,的b值相同,椭圆的a值小于椭圆的a值,由e可得e1e21.同理可得1e4e3,故e1e2e4e3.答案:e1e2e40,b0)的左焦点、右顶点,点B(0,b)满足0,则双曲线的离心率为_解析:因为0,所以,所以FBAB,所以ABF90,即AB2BF2AF2,所以a2b2b2c2(ac)2,解得双曲线的离心率为e.答案:9(2010北京西城)已知双曲线x21的左顶点为A1,右焦点为F2,P为双曲

5、线右支上一点,则的最小值为_解析:由题可知A1(1,0),F2(2,0),设P(x,y)(x1),则(1x,y),(2x,y),(1x)(2x)y2x2x2y2x2x23(x21)4x2x5.x1,函数f(x)4x2x5的图象的对称轴为x,当x1时,取得最小值2.答案:2三、解答题(共3个小题,满分35分)10已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,)点M(3,m)在双曲线上(1)求双曲线方程;(2)求证:0;(3)求F1MF2面积解:(1)e,可设双曲线方程为x2y2.过点(4,),1610,即6.双曲线方程为x2y26.(2)证明:法一:由(1)可知,双曲线

6、中ab,c2,F1(2,0),F2(2,0),kMF1,kMF2,kMF1kMF2.点(3,m)在双曲线上,9m26,m23,故kMF1kMF21,MF1MF2.0.法二:(32,m),(23,m),(32)(32)m23m2,M点在双曲线上,9m26,即m230,0.(3)F1MF2的底|F1F2|4,由(2)知m.F1MF2的高h|m|,SF1MF26.11已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.(1)求双曲线C的方程;(2)若直线l:ykx与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围

7、解:(1)设双曲线C的方程为1(a0,b0)由已知得:a,c2,再由a2b2c2,b21,双曲线C的方程为y21.(2)设A(xA,yA)、B(xB,yB),将ykx代入y21,得:(13k2)x26kx90.由题意知解得k1.当k1时,l与双曲线左支有两个交点(3)由(2)得:xAxB,yAyB(kxA)(kxB)k(xAxB)2.AB的中点P的坐标为.设直线l0的方程为:yxm,将P点坐标代入直线l0的方程,得m.k1,213k20.m2(其中O为原点),求k的取值范围解:(1)设双曲线C2的方程为1,则a2413,c24,再由a2b2c2,得b21,故C2的方程为y21.(2)将ykx代入y21,得(13k2)x26kx90.由直线l与双曲线C2交于不同的两点,得,k2且k22,得x1x2y1y22,2,即0,解得k23,由得k21,故k的取值范围为(1,)(,1)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服