ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:114.50KB ,
资源ID:5872146      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5872146.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(函数方程思想的应用举例.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

函数方程思想的应用举例.doc

1、函数方程思想的应用举例函数方程思想是中学数学中最基本、最重要的数学思想,也是历年高考的重点。函数的思想就是用运动和变化的观点,分析和研究数学问题。具体来说,即先构造函数,把给定问题转化为研究辅助函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。函数方程思想就是将数学问题转化为方程或方程组问题。通过解方程(或方程组)或者运用方程的性质来分析、转化问题,使问题得以解决。函数与方程思想是密切相关的,函数,当时,就转化为方程或看作方程;而方程的解是函数图象与x轴交点的横坐标。函数与不等式也可以相互转化,对函数,当时,就是不等式,而求的解则可比较函数图象位置

2、而得到。一. 构造函数思想例1. 证明不等式分析:由所证不等式很容易想到比商法,但a、b的正负无法确定,即使分类后,当a、b都为正数时,其商也无法与1比大小,思路受阻。再观察不等式两边形式类似,稍加变形即为,即可联想到函数,就只需证了,利用函数单调性,问题得以巧妙解决。解:令在上,则在上为增函数则,即所以。点评:应用函数性质证明不等式,关键在于构造一个适当的函数,且能方便地判断函数的有关性质。例2. 已知,对于值域内的所有实数m,不等式恒成立,求x的范围。分析:我们习惯上把x当作自变量,构造函数,于是问题转化为:当时,恒成立,求x范围,但要解决这个问题要用到二次函数以及二次方程的区间根原理。相

3、当复杂。而如果把m看作自变量,x视为参数,原不等式化为,构造函数为m的一次函数,在上恒大于0,这样就非常简单。解:因为,所以,即原不等式可化为恒成立,又所以,令为m的一次函数,问题转化为在上恒大于0的问题。则只需解得或即。点评:注意到本题有两个变量x、m,且x本来为主元,但为了解题方便,把原不等式看为m的一次函数,大大简化了运算。在多字母的关系式中,应对参数的策略常常是“反客为主、变更主元”,重新构造函数。二. 构造方程思想例3. 已知,则有( )A. B. C. D. 分析:原式变为,则是实系数一元二次方程的一个实根,故,故选C。点评:通过简单转化,敏锐地抓住了数与式的特点,运用方程思想使问

4、题迎刃而解。例4. 已知,且,则a的范围为_。解:由平方得又,则,由此得到启示与都可用a表示,故b、c是关于x的一元二次方程的两根。故解得。点评:当问题出现两数积与这两数和时,是构造一元二次方程的明显信号,构造方程后再用方程特点可使问题巧妙解决。三. 函数方程统一思想例5. 已知三次方程恰有三个相异实根,求实数m的范围方程的根,即函数图象与x轴交点横坐标,由题意函数应与x轴有三个不同产点,因三次曲线连续且光滑,故只需函数极大值与极小值异号即可。解:令则令,得为使与x轴交于不同的三个点。只须即。点评:方程函数互相转化,为得到方程根的情况,用函数图象特点,特别用导数法求得极值点,用限制极值的方法使图象穿x轴三次,问题解决。利用函数图象交点个数及交点位置,使方程满足其根的某限制条件,是最常见的方程与函数统一的思想,借助图象特点,能直观又准确地看到方程根的情况.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服