ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:95KB ,
资源ID:5871776      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5871776.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二次函数与一次函数交点求范围专题.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数与一次函数交点求范围专题.doc

1、二次函数与一次函数交点求范围专题1. 在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围?2.二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4)(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值

2、范围3已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围4.已知二次函数y=x2-2(k+1)x+k2-2k-3与x轴有两个交点(1)求k的取值范围;(2)当k取最小的整数时,求二次函数的

3、解析式;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m的值1.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,2),B(3,4)(1求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围?解:(1)抛物线y=2x2+mx+n经过点A(0,2),B(3,4),代入得:,解得:,抛物线解析式为y=2x24x2

4、,对称轴为直线x=1;(2)由题意得:C(3,4),二次函数y=2x24x2的最小值为4,由函数图象得出D纵坐标最小值为4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,直线BC解析式为y=x,当x=1时,y=,则t的范围为4t2.二次函数y=x2+bx+c的图象如图所示,其顶点坐标为M(1,-4)(1)求二次函数的解析式;(2)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y=x+n与这个新图象有两个公共点时,求n的取值范围134134(1)因为M(1,-4)是二次函数y=(x+m)2+k的顶点坐标

5、,所以y=(x-1)2-4=x2-2x-3,(2)令x2-2x-3=0,解之得:x1=-1,x2=3,故A,B两点的坐标分别为A(-1,0),B(3,0)如图,当直线y=x+n(n1),经过A点时,可得n=1,当直线y=x+n经过B点时,可得n=-3,n的取值范围为-3n1,翻折后的二次函数解析式为二次函数y=-x2+2x+3当直线y=x+n与二次函数y=-x2+2x+3的图象只有一个交点时,x+n=-x2+2x+3,整理得:x2-x+n-3=0,=b2-4ac=1-4(n-3)=13-4n=0,解得:n=134,n的取值范围为:n,由图可知,符合题意的n的取值范围为:n或-3n14.已知二次

6、函数y=x2-2(k+1)x+k2-2k-3与x轴有两个交点(1)求k的取值范围;(2)当k取最小的整数时,求二次函数的解析式;(3)将(2)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象请你画出这个新图象,并求出新图象与直线y=x+m有三个不同公共点时m的值解:(1)抛物线与x轴有两个交点,=4(k+1)2-4(k2-2k-3)=16k+160k-1k的取值范围为k-1(2)k-1,且k取最小的整数,k=0y=x2-2x-3=(x-1)2-4(3)翻折后所得新图象如图所示平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点当直线位于l1时,此时l1过点A(-1,0),0=-1+m,即m=1当直线位于l2时,此时l2与函数y=-x2+2x+3(-1x3)的图象有一个公共点方程x+m=-x2+2x+3,即x2-x-3+m=0有两个相等实根=1-4(m-3)=0,即综上所述,m的值为1或

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服