ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:122.50KB ,
资源ID:5871462      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5871462.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二次函数复习设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数复习设计.doc

1、 二次函数小结与复习教学目标: 1使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。 2能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。重点难点: 重点:利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。 难点:将实际问题转化为函数问题,并利用函数的性质进行决策。教学过程:一、例题精析,引导学法,指导建模 1何时获得最大利润问题。 例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销 售,区政府对该花木产品每投资x万元,所获利润为万元,为了响应我国西部大开发的宏伟

2、决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润万元。 (1)若不进行开发,求10年所获利润最大值是多少? (2)若按此规划开发,求10年所获利润的最大值是多少? (3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。 学生活动:投影给出题目后,让学生先自主分析,小组进行讨论。 教师活动:在学生分析、讨论过程中,对学生进行学法引导,引导学

3、生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。 教师精析: (1)若不开发此产品,按原来的投资方式,由知道,只需从万元专款中拿出万元投资,每年即可获最大利润万元,则年的最大利润为万元。 (2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:(万元) 则前5年的最大利润为万元 设后5年中x万元就是用于本地销售的投资。则由知,将余下的(万元全部用于外地销售的投资才有可能获得最大利润; 则后5年的利润是: 故当时,取得最大值为3500万元。 10年的最大利润为万元 (3)因为3547.5100,所以该项目有极大的开发价值。 强化

4、练习:某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看做次函数ykxb的关系,如图所示。 (1)根据图象,求一次函数ykxb的表达式, (2)设公司获得的毛利润(毛利润销售总价成本总价)为S元,试用销售单价x表示毛利润S;试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少? 分析:(1)由图象知直线过(600,400)、(700,300)两点,代入可求解析式为 (2)由毛利润S销售总价成本总价,可得S与x的关系式。 所以,当销售定价定为750元时,获

5、最大利润为62500元。 此时,即此时销售量为250件。 2最大面积是多少问题。 例:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。 (1)求出S与x之间的函数关系式; (2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用; (3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元) (参与资料:当矩形的长是宽与(长宽)的比例中项时,这样的矩形叫做黄金矩形,2.236) 学生活动:让学生根据已有的经验,根据实际几何问题中的数量关系,建立恰当的二次函数模型,并借助二次函数的相

6、关知识来解决这类问题。 教师精析: (1)由矩形面积公式易得出 (2)确定所建立的二次函数的最大值,从而可得相应广告费的最大值。 由,知当时,即此矩形为边长为3的正方形时,矩形面积最大,为9m2,因而相应的广告费也最多:为元。 (3)构建相应的方程(或方程组)来求出矩形面积,从而得到广告费用的大小。 设设计的黄金矩形的长为x米,则宽为(6x)米。 则有 解得x133 (不合题意,舍去),x233。 即设计的矩形的长为(3,3)米,宽为(93)米时,矩形为黄金矩形。 此时广告费用约为:1000(33)(93)8498(元)二、课堂小结:让学生谈谈通过本节课的学习,有哪些体验,如何将实际问题转化为

7、二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。三、作业: 1某公司生产的A种产品,它的成本是2元,售价为3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是 (十万元)时,产品的年销售量将是原销售量的y倍,且,如果把利润看成是销售总额减去成本费和广告费。 (1)试写出年利润S(十万元)与广告费x(十万元)的函数关系式 (2)如果投入广告费为1030万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增次? (3)在(2)中,投入的广告费为多少万元时,公司获得的年利润最大?是多少? 2如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可使用长度米)。 (1)如果所围成的花圃的面积为45平方米,试求宽AB的长; (2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法,如果不能请说明理由课后反思: 二次函数的应用综合体现了二次函数性质的应用,同时,这类综合题与其他学过的知识有着密切的联系,最大利润问题,最大面积问题是实际生活中常见的问题,综合性强,解题的关键在于如何建立恰当的二次函数模型,建立正确的函数关系式,这一点应让学生有深刻的体会。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服