ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:107.12KB ,
资源ID:5822585      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5822585.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一元二次方程根的判别式教学案例.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一元二次方程根的判别式教学案例.doc

1、一元二次方程根的判别式教学案例作者: 高坤成日期:2008-03-27 19:43:56一、教材分析1、4、教学目标:(1)知识能力目标:通过本课的学习,让学生在知识上了解掌握根的判别式。在能力上在求不解方程能判定一元二次方程根的情况;根据根的情况,探求所需的条件。(2)情感目标:学生通过观察、分析、讨论、相互交流、培养与他人交流的能力,通过观察、分析、感受数学的变化美,激发学生的探求欲望。5、数学思想:由感性认识到理性认识。6、教学重点:(1)发现根的判别式。(2)用根的判别式解决实际问题。7、教学难点:根的判别式的发现8、教法:启导、探究9、学法:合作学习与探究学习10、教学模式:引导发现

2、式二、教学过程(一)自习回顾,引入新课1、师生共同回顾:一元二次方程的解法2、解下列一元二次方程。(1)x2 -1=0 (2)x2 -2x =-1(3)(x+1)2- 4=0 (4)x2 +2x+2=03、为什么会出现无解?(二)探索1、回顾:用配方法解一元二次方程ax2+bx+c=0(a0)的过程。ax2+bx+c=0x2+ b/ax =cx2+ x+()2=( )2c2(x+ ) 2= 22 2、观察(x+ ) 2= 2 在什么情况下成立?3、学生分组讨论。4、猜测?5、发现了什么?6、总结:2(先由学生完成,后由教师补充完整),通过观察分析发现,只有当 b24ac 0时, 才能直接开平方

3、,也就是说,一元二次方程ax2+bx+c=0(a0)只有当系数a,b,c都是b24ac 0时,才有实数根。(注意有根和有实数根的区别)7、进一步观察发现一元二次方程ax2+bx+c=0(a0)(1)当b24ac 0时,_(2)当b24ac 0时,_(3)当b24ac 0时,_8、总结:(1)比较分析学生的讨论分析结果。(2)由学生总结。(3)教师根据学生总结情况补充完整。把b24ac叫做一元二次方程ax2+bx+c=0(a0)的根的判别式。(1)当b24ac 0时,_(2)当b24ac 0时,_(3)当b24ac 0时,_(三)应用新知:1、不解方程判定下列一元二次方程根的情况。(1)x2-x

4、-6=0 b24ac=_ x1=_ x2=_(2)x2-2x=1 b24ac=_ x1=_ x2=_(3)x2-2x+2=0 b24ac=_ x1=_ x2=_2、根据根的情况,求字母系数的取值范围。例1:当m取什么值时,关于x的一元二次方程,2x2-(m+2)+2m=0有两个相等的实数根?并求出方程的根。(1)读题分析:A、二次项系数是什么? a=_B、一次项系数是什么? b=_C、常数项是什么? c=_(2)建立等式,根据有个常数根 b24ac=0(3)由学生完成解题过程后教师评价3、证明例2:说明不论m取什么值时,关于x的一元二次方程(x-1)(x-2)=m2,不论m取代的值都有几个不相

5、等的实根。(四)已知关于x的一元二次方程2x2-(2m+1)x+m=0的根的判别式是9,求m的值及方程练习的根。(五)小结:把_叫做一元二次方程ax2+bx+c=0(a0)的根的判别式,并会用它们解决一些实际问题。三、作业1、把第1、2整理在作业本上。2、有余力的同学把练习题整理在作业本。(一)教学过程1复习提问(1)平方根的性质是什么?(2)解下列方程:;。问题(1)为本节课结论的得出起到了一个很好的铺垫作用。问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用。2任何一个一元二次方程用配方法将其变形为,因此对于被开方数来说,只需研究为如下几种情况的方程的根。(

6、1)当时,方程有两个不相等的实数根。即(2)当时,方程有两个相等的实数根,即。(3)当时,方程没有实数根。教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:。3定义:把叫做一元二次方程的根的判别式,通常用符号“”表示。一元二次方程。当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根。反之亦然。注意以下几个问题:(1)复习提问这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况。正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫。在这里应向学生渗透转化和分类的思想方法。(2)当,说“方程没有实数根”比较

7、好。有时,也说“方程无解”。这里的前提是“在实数范围内无解”,也就是方程无实数根的意思。(一)教学过程1复习提问(1)平方根的性质是什么?(2)解下列方程:;。问题(1)为本节课结论的得出起到了一个很好的铺垫作用。问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用。2任何一个一元二次方程用配方法将其变形为,因此对于被开方数来说,只需研究为如下几种情况的方程的根。(1)当时,方程有两个不相等的实数根。即(2)当时,方程有两个相等的实数根,即。(3)当时,方程没有实数根。教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?答:。3定义:把叫做一元二次方程的根的

8、判别式,通常用符号“”表示。一元二次方程。当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根。反之亦然。注意以下几个问题:(1)这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况。正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫。在这里应向学生渗透转化和分类的思想方法。(2)当,说“方程没有实数根”比较好。有时,也说“方程无解”。这里的前提是“在实数范围内无解”,也就是方程无实数根的意思。4例题讲解例1 不解方程,判别下列方程的根的情况:(1);(2);(3)。解:(1)原方程有两个不相等的实数根。(2)原方

9、程可变形为。,原方程有两个相等的实数根。(3)原方程可变形为。原方程没有实数根。学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的(2)计算的值;(3)判别根的情况。强调两点:(1)只要能判别值的符号就行,具体数值不必计算出。(2)判别根据的情况,不必求出方程的根。练习:不解方程,判别下列方程的情况:(1);(2);(3);(4);(5);(6)学生板演、笔答、评价。(4)题可去括号,化一般式进行判别,也可设,判别方程根的情况,由此判别原方程根的情况。例2 不解方程,判别方程的根的情况。解:。又 不论k取何实数, 原方程有两个实数根。教师板书,引导学生回答。此题是含

10、有字母系数的一元二次方程。注意字母的取值范围,从而确定的取值。练习:不解方程,判别下列方程根的情况。(1);(2);(3)。学生板演、笔答、评价。教师渗透、点拨。(3)解: 不论m取何值,即。 方程无实数解。由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值。(二)总结、扩展1判别式的意义及一元二次方程根的情况。(1)定义:把叫做一元二次方程的根的判别式,通常用符号“”表示。(2)一元二次方程。当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根。反之亦然。2通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法。四、布置作业教材P27A14。5不解方程,判断下x的方程的根的情况(1)(2)本节内容是在学生掌握一元二次方程的解法基础上学习的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,并进一步深化前面学习内容,并为了后面学生利用它进一步学习函数的有关内容。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服