ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:64.01KB ,
资源ID:5822343      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5822343.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《余弦定理》教学案例.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《余弦定理》教学案例.doc

1、凤凰高中数学教学参考书配套教学软件_教学设计 《余弦定理》教学设计 扬中市第二高级中学 张丽 【学情分析】 学生已经会用正弦定理解决三角形相关问题,了解三角形边角之间存在着一定的数量关系,这为本节课的学习奠定了基础。对于正弦定理解决已知两边及夹角问题学生有一定的求知欲,这就促使学生去探索如何求解该类问题. 【教学目标】 知识与技能 (1)掌握余弦定理的证明方法,牢记公式. (2)掌握余弦定理公式的变式,会灵活应用余弦定理. 过程与方法 (1)使学生经历公式的推导过程,培养严谨的逻辑思维. (2)培养学生数形结合的能力. (3)培养学生的问题解决能力. 情感态

2、度价值观 经历余弦定理的推导过程,感受数学思维的严谨美,通过比较余弦定理公式感受数学公式的对称美,通过比较勾股定理以及余弦定理体会一般与特殊的关系. 【教学重点】 余弦定理推导 【教学难点】 余弦定理推导及应用 【教法学法】 教法: 一、情景教学法:创设问题情境,以学生感兴趣的,并容易理解的情景为开端,让学生在各自熟悉的场景中轻松、愉快地学习. 二、启发性教学法:启发性原则是永恒的。让学生成为课堂上行为的主体. 三、师生互动的探究教学法:充分给学生提供交流与归纳的空间,使整个数学活动生动活泼和富有个性的学习. 学法: 根据新课程理念,结合学生自身年龄特点和思维特点,让学生

3、通过分组讨论,汇报交流,归纳总结等方式进行学习. 【教学过程】 图1 A B 1. 创设情景,提出问题. 问题1:修建一条高速公路,要开凿隧道将一段山体打通.现要测量该山体底侧两点间的距离,即要测量该山体两底侧A,B两点间的距离(如图1).请想办法解决这个问题. 设计意图:这是一个学生身边的实际应用问题,在其解决的过程中得到余弦定理,自然引出本课的学习内容. 2. 构建模型,解决问题. 学生活动:提出的方法有,先航拍,然后根据比例尺算出距离;利用等高线量出距离等;也有学生提出在远处选一点C,然后量出AC,BC的长度,再测出∠ACB.△ABC是确定的,就可以计算出AB的

4、长.接下来,请三位板演其解法. 法1:(构造直角三角形) 图2 如图2,过点A作垂线交BC于点D,则 |AD|=|AC|sinC,|CD|=|AC|cosC, |BD|=|BC|-|CD|=|BC|-|AC|cosC, 所以, . 图3 法2:(向量方法) 如图3,因为, 图4 所以, 即 . 法3:(建立直角坐标系) 建立如图4所示的直角坐标系,则A (|AC|cosC, |AC|sinC), B (|BC|, 0), 根据两点间的距离公式,可得 , 所以,. 活动评价:师生共同评价板演. 3. 追踪成果,提出猜想. 师:

5、回顾刚刚解决的问题,我们很容易得到结论:在△ABC中,a,b,c是角A,B,C的对边长,则有成立.类似的还有其他等式, ,. 正弦定理反映的是三角形中边长与角度之间的一种数量关系,因为与正弦有关,就称为正弦定理;而上面等式中都与余弦有关,就叫做余弦定理. 问题2:刚才问题的解题过程是否可以作为余弦定理的证明过程? 设计意图:作为定理要经过严格的证明,在解决问题中培养学生严谨的思维习惯. 学生活动:经过思考得出,若把解法一作为定理的证明过程,需要对角C进行分类讨论,即分角C为锐角、直角、钝角三种情况进行证明;第二种和第三种解法可以作为余弦定理的证明过程. 教师总结:证明余弦定理,就是

6、证明一个等式.而在证明等式的过程中,我们可以将一般三角形的问题通过作高,转化为直角三角形的问题;还可以构造向量等式,然后利用向量的数量积将其数量化;还可以建立直角坐标系,借助两点间的距离公式来解决,等等. 4. 探幽入微,深化理解. 问题3:刚刚认识了余弦定理这个“新朋友”,看一看它有什么特征? 学生活动:勾股定理是余弦定理的特例. 反过来也可以说,余弦定理是勾股定理的推广;当角C为锐角或钝角时,边长之间有不等关系 ,;是边长a、b、c的轮换式,同时等式右边的角与等式左边的边相对应;等式右边有点象完全平方,等等. 教师总结:我们在观察一个等式时,就如同观察一个人一样,先从远处看,然后

7、再近处看,先从外表再到内心深处.观察等式时,先从整体(比如轮换)再到局部(比如等式左右边角的对称),从一般到特殊,或者从特殊到一般(比如勾股定理是余弦定理的特例,余弦定理是勾股定理的推广). 问题4:我们为什么要学余弦定理,学它有什么用? 设计意图:让学生真正体会到学习余弦定理的必要性.同时又可以得到余弦定理能解决的三角形所满足的条件,以及余弦定理的各种变形.让学生体会在使用公式或定理时,不但要会“正向使用”还要学会“逆向使用”. 学生活动:解已知三角形的两边和它们夹角的三角形;如果已知三边,可以求角,进而解出三角形,即 . 5. 学以致用,拓展延伸. 练习: 1.在△ABC中,若a=3,b=5,c=7,求角C. 2.(1)在△ABC中,若,解这个三角形. (2)在△ABC中,,求a. 学生活动:练习后相互交流得出,解答题1时,利用的是余弦定理的变形形式;而题2既可以利用正弦定理,也可以利用余弦定理解决. 思考:正弦定理与余弦定理间是否存在着联系呢?你能用正弦定理证明余弦定理,用余弦定理证明正弦定理吗?请同学们课后思考.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服