ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:208KB ,
资源ID:5783436      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5783436.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(《对数的概念》教学设计.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《对数的概念》教学设计.doc

1、金太阳新课标资源网 对数的概念教学设计一、教材分析课程标准指出,通过必要地数学学习,获得必要的基础知识和基本技能,理解基本的数学概念,数学结论的本质,了解概念,结论等产生的背景,体会所蕴含的数学思想方法。通过探究活动,体会数学发现和创造的历程。提高运算,处理数据,分析、解决问题的能力。本节课是新课标高中数学A版必修中第二章对数函数内容的第一课时,也就是对数函数的入门。在本模块中,对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对

2、数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。二、学情分析必修一是学生进入高中接触的第一本数学教材,高中开始阶段,学生还不太适应高中的学习生活,学习的主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识基础,所以通过指导,教会学生独立思考、大胆探索和灵活运用类比、等价转

3、化、归纳等数学思想方法的学习。三、设计思路学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。结合高一数学组承担的课题教 师 课 堂 教 学 行 为 的 评 价、反 思 及 有 效 教 学 研 究通过教师的课堂教学行为,使学生充分地动手、动口、动脑,掌握学习的主动权,提高课堂教学效率。四、三维教学目标知识目标:1.理解对数的概念,了

4、解对数与指数的关系;2.掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。能力目标: 1.通过事例使学生认识对数的模型,体会引入对数的必要性;2.通过师生观察分析得出对数的概念及对数式与指数式的互化。通过学生分组探究进行活动,掌握对数的重要性质。培养学生的类比、分析、归纳,等价转化能力。情感目标:培养学生大胆探索,不断创新的研究精神;培养学生严谨的思维品质。使学生认识到数学的科学价值,应用价值和文化价值。五、教学重点与难点重点 :(1)对数的概念;(2)对数式与指数式的相互转化。难点 :(1)对数概念的理解;(2)对数性质的理解。六、教学过程设计创设情境,引入新课(一)引例1、

5、一尺之棰,日取其半,万世不竭。(1)取5次,还有多长?(2)取多少次,还有0.125尺?分析:(1)为同学们熟悉的指数函数的模型,易得(2)可设取x次,则有 抽象出: 2、根据国务院发展研究中心2000年发表的未来20年我国发展的前景分析,2002年我国GPD为a亿元,如果每年平均增长7.3%,那么经过多少年GPD是2002年的2倍?分析:设经过x年,则有 抽象出: 【设计意图:让学生根据题意,设未知数,列出方程。这两个例子都出现指数是未知数x的情况,让学生思考如何表示x,激发其对对数的兴趣,培养学生的探究意识。生活及科研中还有很多这样的例子,因此引入对数是必要的。】创新探究,进入新课一、对数

6、的概念一般地,如果a(a0且a1)的b次幂等于N, 就是 =N 那么数 b叫做 a为底 N的对数,记作,a叫做对数的底数,N叫做真数。注意:底数的限制:a0且a1对数的书写格式【设计意图:正确理解对数定义中底数的限制,为以后对数函数定义域的确定作准备。同时注意对数的书写,避免因书写不规范而产生的错误。】二、对数式与指数式的互化(板书)幂底数 a 对数底数指数 b 对数幂 N 真数思考:为什么对数的定义中要求底数a0且a1? 是否是所有的实数都有对数呢?结论:负数和零没有对数【设计意图:让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a、b和N位置的不同,及它们的含义。互化体现了等价转

7、化这个重要的数学思想。】三、两个重要对数(板书)常用对数:以10为底的对数, 简记为: lgN 自然对数:以无理数e=2.71828为底的对数的对数简记为: lnN . 注意:两个重要对数的书写【设计意图:这两个重要对数一定要掌握,为以后的解题以及换底公式做准备。】课堂练习1 将下列指数式写成对数式:(1) (2) (3) (4)2 将下列对数式写成指数式:(1) (2) (3)3 求下列各式的值:(1) (2)【设计意图:本练习让学生独立阅读课本P63例1和例2后思考完成,从而熟悉对数式与指数式的相互转化,加深对对数的概念的理解。并要求学生指出对数式与指数式互化时应注意哪些问题。培养学生严谨

8、的思维品质。】四、对数的性质探究活动1求下列各式的值:(1) 0 (2) 0 (3) 0 (4) 0 思考:你发现了什么?结论:“1”的对数等于零,即 类比: 探究活动2求下列各式的值:(1) 1 (2) 1 (3)1 (4) 1 思考:你发现了什么?结论:底数的对数等于“1”,即 类比: 探究活动3求下列各式的值:(1) 3 (2) 0.6 (3) 89 思考:你发现了什么?结论:对数恒等式: 探究活动4求下列各式的值:(1) 4 (2) 5 (3) 8 思考:你发现了什么?结论:对数恒等式: 【设计意图:探究活动由学生独立完成后,通过思考,然后分小组进行讨论,最后得出结论。通过练习与讨论的

9、方式,让学生自己得出结论,从而更能好地理解和掌握对数的性质。培养学生类比、分析、归纳的能力。最后,将学生归纳的结论进行小结,从而得到对数的基本性质。】小结:负数和零没有对数“1”的对数等于零, 即底数的对数等于“1”, 即对数恒等式: 对数恒等式: 【设计意图:将学生归纳的结论进行小结,从而得到对数的基本性质。】五、巩固练习1、课本P64 练习 2、提高训练(1)已知x满足等式,求值(2)求值:【设计意图:巩固指数式与对数式的互化,巩固对数的基本性质及其应用。】归纳小结,强化思想1、 引入对数的必要性-对数的概念一般地,如果a(a0且a1)的b次幂等于N,就是 =N,那么数b叫做以a为底,N的

10、对数。记作 2 、指数与对数的关系(板书)3、对数的基本性质负数和零没有对数 对数恒等式: 【设计意图:总结是一堂课内容的概括,有利于学生系统地掌握所学内容。同时,将本节内容纳入已有的知识系统中,发挥承上启下的作用。为下一课时对数的运算打下扎实的基础。】课程结束,布置作业一、课本P74习题2.2 A组 第1、2题二、已知,求的值三、求下列各式的值: (1) (2) (3) (4) 【设计意图:作业是学生信息的反馈,教师可以在作业中发现学生在学习中存在的问题,弥补教学中的不足。】教学反思本教学设计先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握。在整个教学中,以学生为主体,以小组讨论的形式学习本课内容,培养了学生严谨的数学素养和勇于探索的创新精神。板书设计:2.2.1 对数的概念一、对数的概念 二、指对互化三、两个常用对数1.常用对数 简记为: lgN (以10为底)2.自然对数 简记为: lnN (以e为底)四、对数的性质1、负数和零没有对数 2、“1”的对数等于零, 即3、底数的对数等于“1”, 即 4、对数恒等式: 五、 作业六、 小结(多媒体)第 8 页 共 8 页 金太阳新课标资源网

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服