ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:1.21MB ,
资源ID:5780888      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5780888.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2.2一元二次方程的解法(2)学案公开课教案教学设计课件案例试卷题.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2.2一元二次方程的解法(2)学案公开课教案教学设计课件案例试卷题.doc

1、中小学教育资源及组卷应用平台 2.2一元二次方程的解法(2)学案课题 2.2一元二次方程的解法(2)单元第二单元学科数学年级八年级下册学习目标1.能用开平方法解一元二次方程;2能用配方法解二次项系数为1的一元二次方程重点开平方法解一元二次方程难点配方法解二次项系数为1的一元二次方程教学过程导入新课创设情景,引出课题议一议 想一想:因式分解法解方程的基本步骤:1. 若方程的右边不是0,先移项,使方程的右边为0.2.将方程的左边分解因式;3.根据若AB=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程.想一想: 工人师傅为了修屋顶,把一梯子搁在墙上,梯子与屋檐的接触处到底端的长AB=

2、5米,墙高AC=4米,问梯子底端点离墙的距离是多少?设BC=x,根据勾股定理,得x2+42=52.化简,得x2-9=0, (x-3) (x+3) =0,解得x1=3,x2=-3 (不合题意,舍去)试一试:还有其它解法吗?新知讲解提炼概念 一般地,对于形如x2=a(a0)的方程,根据平方根的定义,可解得 这种解一元二次方程的方法叫做开平方法.想一想:利用开平方法解一元二次方程的步骤是什么? 典例精讲 例4 用开平方法解下列方程:(1)3x248=0 (2)(2x3)2=7解:移项,得3x2=48解得x1=4,x2=-4(2)(2x3)2=7解:由原方程,得2x-3= , 或2x-3=-解得x1=

3、 ,x2=思考:你能用开平方法解下列方程吗? x210x=-16那应该用什么方法呢?你能将方程x210x=-16转化成(x+a)2=b的形式吗?请尝试解这个方程.将一次项10x改写成2x5,得x22x5=-16由此可以看出,为使左边成为完全平方式,只需在方程两边都加上52即:x2-2x5+52=16+52, (x-5)2=9解这个方程,得x1=8,x2=2. 把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.例5 用配方法解下列一元二次方程 (1) x2+6x=1 (2) x2+5x-6=0 解:(1)方程的两边同时加上9,得x

4、26x+9=1+9,即( x+3)2=10 (2)移项,得x2+5x=6,方程的两边同时加上 解得x1=1,x2=-6配方法解二次项系数为1的一元二次方程的基本步骤:(1)移项:把常数项移到方程的右边;(2)配方:方程两边同时加上一次项系数一半的平方;(3)开方:根据平方根的意义,方程两边开平方;(4)求解:解一元一次方程;(5)定解:写出原方程的解.课堂练习巩固训练1.一元二次方程(x1)23的解是( )Ax11,x21Bx11,x21Cx13,x21 Dx11,x232.解下列一元二次方程:(1)2x280;(2)x24x47;解:(1)移项,得2x28,方程两边同除以2,得x24,解得x

5、12,x22(2)由原方程,得(x2)27,则x2,解得x12,x22用配方法解下列方程:(1)x+12x-9. (2)-x+4x-3=0课堂小结小1用开平方法解一元二次方程定义:一般地,对于形如x2a(a0)的方程,根据平方根的定义,可得x1_,x2_这种解一元二次方程的方法叫做开平方法2用配方法解二次项系数为1的一元二次方程配方法:把一元二次方程的左边配成一个_完全平方式_,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法步骤:(1)移项,把常数项移到方程右边,左边只含二次项和一次项;(2)配方,方程两边加上_一次项系数一半的平方_,然后将方程整理成(xn)2a的形式;(3)降次,若a0,用开平方法求解,若a0,则方程无实数根21世纪教育网()

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服