1、
等腰三角形第二课时整体教学设计
【教学目标】
知识与技能
探索等腰三角形的判定定理.
过程与方法
探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.
情感、态度与价值观
通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.
【教学重难点】
重点:等腰三角形的判定定理及其应用.
难点:探索等腰三角形的判定定理.
【教学过程】
一、提出问题,创设情境
师:上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?
[生甲]等
2、腰三角形的两底角相等.
[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.
师:同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.
二、导入新课
师:同学们看下面的问题并讨论、思考:如图,位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?
在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,在相
3、同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.
[生乙]我认为能同时赶到O点的位置很重要,也就是∠A果不等于∠B,那么同时以同样的速度就不一定能同时赶到出事地点.
师:现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?
[生丙]我想它们所对的边应该相等.
师:为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明.
[生丁]我是运用三角形全等来证明的.
例1:已知:在△ABC中,∠B=∠C(如图).
求证:AB=AC.
证明:作∠BAC的平分线AD.
在△BAD和△CAD中
∴△BAD≌△CAD(
4、AAS).
∴AB=AC.
师:太好了.从丁同学的证明结论来看,在一个三角形中,如果有两个角相等,那么它们所对的边也相等,也就说这个三角形就是等腰三角形.这个结论也回答了我们一开始提出的问题.也就是如何来判定一个三角形是等腰三角形.
等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
师:下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.
例2:求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.
【分析】这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的
5、几何图形.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).
求证:AB=AC.
师:同学们先思考,再分析.
[生]要证明AB=AC,可先证明∠B=∠C.
师:这位同学首先想到我们这节课的重点内容,很好!
[生]接下来,可以找∠B、∠C与∠1、∠2的关系.
师:我们共同证明,注意每一步证明的理论根据.
证明:∵AD∥BC,
∴∠1=∠B(两直线平行,同位角相等),
∠2=∠C(两直线平行,内错角相等).
又∵∠1=∠2,
∴∠B=∠C,
∴AB=AC(等角对等边).
师:看小黑板,同学们试着完成这个题.
已知:如图,AD∥BC,BD平分∠ABC.
6、
求证:AB=AD.
证明:∵AD∥BC,
∴∠ADB=∠DBC(两直线平行,内错角相等).
又∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD(等角对等边).
师:下面来看另一个例题.
例3:如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?
(1) (2)
【分析】这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.
解
7、选取比例尺为1∶100(即为1 cm代表1 m).
(1)作线段DE=4 cm;
(2)作线段DE的垂直平分线MN,与DE交于点B;
(3)在MN上截取BC=2.5 cm;
(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,就可以算出要求的绳长.
师:同学们按以上步骤来做一做,看结果是多少.
三、随堂练习
课本79页第1、2、3题
四、课时小结
本节课我们主要探究了等腰三角形判定定理,并对判定定理的简单应用作了一定的了解.在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中发现和养成一定的逻辑推理能力.
五、课后作业
课本91页第3、6题.
六、活动与探究
[探究1]等腰三角形两底角的平分线相等.
过程:利用等腰三角形的性质即等边对等角、全等三角形的判定及性质.
际与生活联系起来。