1、掷一掷教学设计 市四小 李慧霞教学目标 :知识与技能:使学生通过猜想、实验、验证的过程,巩固“组合”的有关知识,探讨事件发生的可能性大小。过程与方法:通过活动,使学生初步获得一些数学活动的经验,经历“猜想、实验、验证”的过程,引导学生在活动中发现问题,分析问题,体会到数学在生活中的应用。情感、态度与价值观:结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。教学重点 :探索两个骰子点数之和在5、6、7、8、9居多的原理。教学难点 :让学生在“玩”中获得数学知识,在学中感受数学的趣味。教学活动 :讲授:掷一掷 .一、创设情境,引入新课出示骰子,师问
2、:同学们对骰子不陌生吧,你们在哪见过?它和数学有什么联系?(学生可能回答:在打麻将时、玩具上见过;骰子上有6个数字。)学生回答后,师引导:这节课我们就来掷一掷骰子,通过游戏一起探究骰子里面的数学奥秘。二、师生互动,探究新知(一)游戏铺垫1、在进行游戏前,老师提出几点要求希望同学们在游戏中要会听,会学,会思考。2、那老师先来考考大家。掷一个色子,朝上的点数可能是几?(课件出示)预设:16(课件出示)那同时掷两个色子,会得到两个朝上的点数,它们的和可能是几?(课件出示)预设:212追问:可能有1和13吗?为什么?学生自主思考,通过组合知识得出结论。(不可能,因为两个数的和最小是2最大是12。)小结
3、:同时掷两个色子,得到的点数和是212(课件出示)3、看来大家都很会思考,是不是很想玩这个游戏了?(二)师生游戏第一次探索实践。1、请听好游戏规则:老师把这些点数和分为两组5、6、7、8、9为乙组,2、3、4、10、11、12为甲组。(边说边板书)如果和在甲组,就给甲组记一次,如果和在乙组,就给乙组记一次,我们掷20次,哪组记得多,就算哪组赢?(1)猜想:如果让你来选,你会选哪一组,为什么?预设:选乙组的占多数,因为乙组的数多;选甲组的只有极个别,因为甲组的数少。(2)动手实践:画“正”字记录。请双方各派一名代表轮流掷骰子,再请一名学生记录,一名学生监督,其他学生负责大声读出两颗骰子的点数之和
4、。比赛开始。(3)游戏结果:甲组赢了,引发认知冲突。引:我们看统计结果,老师宣布,乙组获胜。是乙组同学运气好吗?大家想不想亲自试一试?(三)小组实验第二次探索实践。1讲清要求。引:大家以小组为单位设计小组能验证自己结论的方法进行实验,实验完后对数据进行分析。预设:1.小组内设计,每人运用画正字方法进行数据分析 2.小组进行实验后设计统计图进行数据整理 3.小组内设计表格,然后进行每次投掷后数字进行涂色,涂色满后游戏结束。2小组活动。师:(老师发学具)拿到学具的小组可以开始活动了3小组汇报引:活动结束,请组长收好学具坐好。哪个小组派代表到前面来说说你们的试验数据和结论?(1)展示几组,哪组赢了?
5、(2)那你们组的结果呢?预设一:看来全班的游戏结果都是甲组赢了,那你有什么发现?预设二:大部分都是甲组赢了,只有一组是乙组赢了。那你有什么发现?(3)小结:看来掷到甲组的这些和可能性大,掷到乙组的这些和可能性小。(板书:可能性大,可能性小)(四)探究本质理论验证。 尝试用列举的方法解决问题。(1)那为什么只选5个数比选6个数赢的可能性还大一些呢?这是什么道理啊!实验的次数终归是有限的,那能不能用我们学过的知识来分析分析呢?(学生说)(用写算式的方法来列举,举个例子,列举每个和搭配的算式;用连线的方法来列举)汇总:其实你们都是想列举出和的各种搭配方式,只不过有些同学想用连线,有些同学想写算式。(
6、教学互动)同位合作:从2号学具袋中选取你所需要的研究记录单,来研究研究每个和的搭配情况。(2)学生交流汇报。(教学互动)你是怎样搭配的?(一个骰子的每个数和另一个骰子的每个数搭配,那就是6个6)得到了36个和。你的方法很有序,将每种和的搭配用连线记录下来,那对于每种和出现的次数你能一眼看出吗?需要数一数。(教学互动)你是将每种和的搭配用写算式的方法记录。列举时,你是怎样做到不重复、不遗漏?8的组成中怎么没有1和7呢?说说你们的研究结果。现在你们组知道为什么和是5、6、7、8、9赢的可能性大吗?(和的搭配方式多,在掷骰子时和是5、6、7、8、9出现的可能性就大)(3)展示方格图的记录方式。同学们
7、可真聪明,积极开动脑筋,想方法解决问题。老师受到你们的启发,把这些和的搭配情况整理成这样一张表格,请看:(课件出示方格图)第一列表示一个骰子可能掷出的6个数,第一行则是另一个骰子可能掷出的6个数。一个骰子掷出1,它和另一个骰子可能出现的6个数分别搭配,和分别是多少?(2、3、4、5、6、7)一个骰子掷出2时,和可能是多少?(3、4、5、6、7、8)依次类推,和一共有36种搭配方式。对和的搭配方式进行统计,仔细观察,和是2的有几种?和是3呢?和是5、6、7、8、9共有几种?和是2、3、4、10、11、12共有几种?(4)现在你们知道为什么和是5、6、7、8、9出现的可能性大,这一组出现的可能性小
8、呢?(板书:可能性大、可能性小)这11种和,一共出现了36次,其中5、6、7、8、9的和出现了24次,剩下这6个数的和出现12次,所以和是5、6、7、8、9出现的可能性大。三、学习回顾,拓展延伸。1、小结引:大家玩得开心吗?学得开心吗?现在让我们静下心来回顾一下,咱们是怎么学的。猜想实验结论,有了结论我们还要合理的去运用,这才是一个很好的学习方法。2、延伸生活中常遇到这样一个问题,你瞧,这是珠海某商场举行了一次抽奖活动,规则如下: 消费金额满200元的可以参加一次抽奖活动,一次同时摸出2个球(箱内有12个大小形状一样的乒乓球,分两组,每组分别写有数字16),摸到球上的数字之和是下列情况的可以得到相应的奖品: 2或12 一等奖 奖品为一个电热水壶100元 3或11 二等奖 奖品为一瓶花生油30元 4或10 三等奖 奖品为一条毛巾6元 5或9 纪念奖 奖品为一瓶饮料1元 师:对商家这样的活动有什么看法? 引导学生交流:商家很精明,出现可能性最大的和为6、7、8时不设奖品;消费者不要贪小便宜去购买不需要的200多元商品,因为很可能抽不到任何奖品或者只抽到纪念奖3、小小的骰子带给我们这么多学问,其实只要大家带着数学的眼光去走进生活,观察生活,你会有更多的发现。最后,有兴趣的同学可以课下研究研究同时掷两颗骰子,用大数减小数,它们的点数之差有什么规律?