1、 2015-2016学年北京四中八年级上学期期中考试 数 学 试 卷 (考试时间:100分钟 满分:120分) 姓名: 班级: 成绩: ____________ 一、选择题(本题共30分,每小题3分) 1.下列图形中,不是轴对称图形的是( ) A. B. C. D. 2.把多项式分解因式,结果正确的是( ) A. B. C. D. 3.分式有意义,则x的取值范围是( ) A. x≠1 B
2、. x=1 C. x≠﹣1 D. x=﹣1 4. 点A(2,3)关于y轴成轴对称的点的坐标是( ) A.(3,-2) B.(-2, 3) C.(-2,-3) D.(2,-3) 5. 在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是( ). A.AC=A′C′ B.BC=B′C′ C.∠B=∠B′ D.∠C=∠C′ 6. 下列各式中,正确的是( ). A. B. C. D.
3、 7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A. 12 B. 15 C. 12或15 D. 18 8.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高, 则∠DBC的度数是( ) A.18° B.24° C.30° D.36° 第8题图 9.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时, 必须保证∠1的度数为( )
4、 A.30° B.45° C.60° D.75° 10.如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于( ) A.50° B.75° C.80° D.105° 第9题图 第10题图 二、填空题(本题共20分,每小题2分)
5、 11.已知某种植物花粉的直径为35000纳米,即0.000035米,把0.000035用科学记数法表示为 _____________________. 12. 分解因式: . 13.计算:__ ____. 14. 如图,在Rt△ABC中,∠C=90°,∠B=30°,AD 平分∠CAB交BC于D,DE⊥AB于E.若DE=1cm, 则BC =_______ cm. 第14题图 15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,
6、且CG=CD, DF=DE,则∠E=_____度. 第15题图 第16题图 第18题图 16.如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC, BC=10cm,则ΔOMN的周长=______cm. 17. 已知,则代数式= . 18. 如图中,平分,,,且的面积为,则的面积为 。 19.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_________°. 20.如图所
7、示,长方形ABCD中,AB=4,BC=4,点E是折线段A—D—C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,能使△PCB为等腰三角形的点E的位置共有 个. 第19题图 第20题图 三、解答题 分解因式(每题4分,共8分). 21. 22. 计算(每题4分,共8分) 23. . 24. . 25.(本题5分)先化简,再求值:,其中.
8、 26.(本题5分)解方程:. 27.(本题5分)已知:如图,AD=AE,AB=AC,∠DAE=∠BAC. 求证:BD=CE. 28. 列分式方程解应用题:(本题5分) 甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字? 29. (本题6分)小明在做课本中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线
9、b与PC的夹角度数,即直线a,b所成角的度数. (1) 请写出这种做法的理由; (2) 小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请直接写出图3中所有与∠PAB相等的角; (3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹. 30.(本题8分) (1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:
10、DE=BD+CE. (2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由. (3)拓展与应用:如图(3),D、E是直线l上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:DF=EF. D A E l B C B C D A E l F B C D A E l 图(1)
11、 图(2) 图(3) 附加题(满分20分,计入总分) 1.(本题4分)已知: ,, 则=__ __. 2.(本题4分)已知:,则 的值为 . 3.(本题12分)等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E。 (1)如图(1),若A(0,1),B(2,0),求C点的坐标;(4分) (2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE, 求证:∠ADB=∠CDE;(4分) (3)如图(3
12、在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由。(4分) 参考答案及评分标准: 一、选择题: 1.A 2.A 3. A 4. B 5. B 6. D 7. B 8. A 9. C 10. C 二、填空题: 11. 12. 13. 4 14. 3 15. 15 16. 10 17. 4
13、 18. 1.5 19. 45 20. 4 三、解答题 21. (m-2)(x-3y)(x+3y) 22. 23. 24. 25.解:原式= = = =----------------------------4分 当时,原式=.------------5分 26.解: ………………………………1分 …………………………………2分 …………………………………3分
14、 ………………………………………4分 经检验:是原方程的增根,所以原方程无解 ……………5分 27.证 28.解:设乙每分钟打x个字,则甲每分钟打(x+5)个字,-------1分 由题意得,=,------------3分 解得:x=45,--------------------4分 经检验:x=45是原方程的解,且符合题意.-------5分 答:甲每人每分钟打50个字,乙每分钟打45个字. 29.解:(1)两直线平行,同位角相等;---1分 (2)∠PAB=∠PDA=∠BDC=∠1,---------4分 (3) 如图,作线段AB的垂直平分线EF, 则E
15、F是所求作的图形.-----------6分 30.解:(1)∵BD⊥l,CE⊥l, ∴∠BDA=∠AEC=90° 又∵∠BAC=90°, ∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°, ∴∠CAE=∠ABD 在△ABD和△CAE中, , ∴△ABD≌△CAE(AAS) ∴BD=AE,AD=CE, ∵DE=AD+AE, ∴DE=CE+BD;-----------------------2分 (2)成立 ∵∠BDA=∠AEC=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α, ∴∠CAE=∠ABD,
16、在△ADB和△CEA中, , ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴BD+CE=AE+AD=DE;-------------------5分 (3)由(2)知,△ADB≌△CAE, BD=EA,∠DBA=∠CAE, ∵△ABF和△ACF均为等边三角形, ∴∠ABF=∠CAF=60°, ∴∠DBA+∠ABF=∠CAE+∠CAF, ∴∠DBF=∠FAE, ∵BF=AF 在△DBF和△EAF中, , ∴△DBF≌△EAF(SAS), ∴DF=EF,∠BFD=∠AFE, ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°, ∴△DEF
17、为等边三角形. ∴DF=EF.-----------------------------8分 附加题: 1. -2 2. 0 3.(1)如图,过点C作CF⊥y轴于点F 则△ACF≌△ABO(AAS), ∴CF=OA=1,AF=OB=2 ∴OF=1 ∴C(-1,-1); (2)如图,过点C作CG⊥AC交y轴于点G 则△ACG≌△ABD(ASA) ∴CG=AD=CD,∠ADB=∠G ∵∠DCE=∠GCE=45° ∴△DCE≌△GCE(SAS) ∴∠CDE=∠G ∴∠ADB=∠CDE; (3) 如图,在OB上截取OH=OD,连接AH 由对称性得AD=AH,∠ADH=∠AHD ∴∠AHD=∠ADH=∠BAO=∠BEO ∴∠AEC=∠BHA 又∵AB=AC ∠CAE=∠ABH ∴△ACE≌△BAH(AAS) ∴AE=BH=2OA ∵DH=2OD ∴BD=2(OA +OD) - 11 -






