1、数学一轮复习单元测试函数(附答案及详细解析)一、选择题(60分,每小题5分)1.若函数是函数的反函数,且,则 A B C D2 2.函数的定义域为R,若与都是奇函数,则( D ) (A) 是偶函数 (B) 是奇函数 (C) (D) 是奇函数3.对于正实数,记为满足下述条件的函数构成的集合:且,有下列结论中正确的是 ( )A若,则B若,且,则C若,则 D若,且,则4.为了得到函数的图像,只需把函数的图像上所有的点 ( ) A向左平移3个单位长度,再向上平移1个单位长度 B向右平移3个单位长度,再向上平移1个单位长度 C向左平移3个单位长度,再向下平移1个单位长度 D向右平移3个单位长度,再向下平
2、移1个单位长度5.定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )A.-1 B. 0 C.1 D. 26.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶甲车、乙车的速度曲线分别为(如图2所示)那么对于图中给定的,下列判断中一定正确的是A. 在时刻,甲车在乙车前面 B. 时刻后,甲车在乙车后面C. 在时刻,两车的位置相同D. 时刻后,乙车在甲车前面7.如图所示,一质点在平面上沿曲线运动,速度大小不 变,其在轴上的投影点的运动速度的图象大致为 8.设函数的定义域为,若所有点构成一个正方形区域,则的值为A B C D不能确定 9.设函数则不等式的解集是( )
3、A B C D 10.设球的半径为时间t的函数。若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径A.成正比,比例系数为C B. 成正比,比例系数为2C C.成反比,比例系数为C D. 成反比,比例系数为2C 11.已知函数是定义在实数集R上的不恒为零的偶函数,且对任意实数都有,则的值是 A. 0 B. C. 1 D. 12.如图1,当参数时,连续函数 的图像分别对应曲线和 , 则 BA B C D 二、填空题(20分,每小题5分)13.若是奇函数,则 14.已知函数若,则 . 15.若函数f(x)=a-x-a(a0且a1)有两个零点,则实数a的取值范围是 .16.记的反函数为,则方程
4、的解 三、解答题(共70分,共6小题)17.(本小题满分12分)已知二次函数的导函数的图像与直线平行,且在=1处取得最小值m1(m).设函数(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值 (2) 如何取值时,函数存在零点,并求出零点.18. (本小题满分12分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.19.(本小题满分12分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影
5、响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。20.(本小题满分10分)已知函数f(x)=xax+(a1),。(1)讨论函数的单调性; (2)证明:若,则对任
6、意x,x,xx,有。21.(本小题满分12分)已知函数,其中若在x=1处取得极值,求a的值; 求的单调区间;()若的最小值为1,求a的取值范围。 22.(本小题满分12分)已知函数的图象在与轴交点处的切线方程是。(I)求函数的解析式;(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.23.(本小题满分12分)某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。 ()
7、试写出关于的函数关系式; ()当=640米时,需新建多少个桥墩才能使最小?一、选择题(60分,每小题5分)1.答案:A【解析】函数的反函数是,又,即,所以,故,选A.2.答案:D解: 与都是奇函数,函数关于点,及点对称,函数是周期的周期函数.,即是奇函数。故选D3.答案:C 【解析】对于,即有,令,有,不妨设,即有,因此有,因此有4.答案:C.w【解析】本题主要考查函数图象的平移变换. 属于基础知识、基本运算的考查. A,B,C,D.故应选C.5.答案:C.【解析】:由已知得,所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.【命题立意】:本题考查归纳推理
8、以及函数的周期性和对数的运算.6.答案:A【解析】由图像可知,曲线比在0、0与轴所围成图形面积大,则在、时刻,甲车均在乙车前面,选A. 7.答案:B【解析】由图可知,当质点在两个封闭曲线上运动时,投影点的速度先由正到0、到负数,再到0,到正,故错误;质点在终点的速度是由大到小接近0,故错误;质点在开始时沿直线运动,故投影点的速度为常数,因此是错误的,故选.8.答案:B【解析】,选B9.答案:A【解析】由已知,函数先增后减再增当,令解得。当,故 ,解得【考点定位】本试题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。10答案:D【解析】由题意可知球的体积为,则,由此可得,而球的表面积为
9、,所以,即,故选D11.答案:A【解析】若0,则有,取,则有: (是偶函数,则 )由此得于是,12.答案:B【解析】解析由条件中的函数是分式无理型函数,先由函数在是连续的,可知参数,即排除C,D项,又取,知对应函数值,由图可知所以,即选B项。二、填空题(20分,每小题5分)13.答案【解析】解法114.5答案.w【解析】5.u.c本题主要考查分段函数和简单的已知函数值求的值. 属于基础知识、基本运算的考查.由,无解,故应填.15. 答案: 【解析】: 设函数且和函数,则函数f(x)=a-x-a(a0且a1)有两个零点, 就是函数且与函数有两个交点,由图象可知当时两函数只有一个交点,不符合,当时
10、,因为函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.16.答案2【解法1】由,得,即,于是由,解得【解法2】因为,所以三、解答题(共70分,共6小题)17.解:(1)设,则; 又的图像与直线平行 又在取极小值, , , ; , 设 则 ; (2)由, 得 当时,方程有一解,函数有一零点; 当时,方程有二解,若, 函数有两个零点;若, ,函数有两个零点; 当时,方程有一解, , 函数有一零点 18.解
11、:本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分(1)若,则(2)当时, 当时, 综上(3)时,得,当时,;当时,0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.A B C x 19.解法一:(1)如图,由题意知ACBC,其中当时,y=0.065,所以k=9所以y表示成x的函数为(2),令得,所以,即,当时, ,即所以函数为单调减函数,当时, ,即所以函数为单调增函数.所以当时, 即当C点到城A的距离为时, 函数有最小值.解法二: (1)同上.(2)设,则,所以当且仅当即时取”=
12、”.下面证明函数在(0,160)上为减函数, 在(160,400)上为增函数.设0m1m2160,则 ,因为0m1m242402409 m1m29160160所以,所以即函数在(0,160)上为减函数.同理,函数在(160,400)上为增函数,设160m1m2400,则因为1600m1m2400,所以49160160所以,所以即函数在(160,400)上为增函数.所以当m=160即时取”=”,函数y有最小值,所以弧上存在一点,当时使建在此处的垃圾处理厂对城A和城B的总影响度最小.【命题立意】:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究
13、函数的单调性等问题.20.解:(1)的定义域为。2分(i)若即,则故在单调增加。(ii)若,而,故,则当时,;当及时,故在单调减少,在单调增加。(iii)若,即,同理可得在单调减少,在单调增加.(II)考虑函数 则由于1a5,故,即g(x)在(4, +)单调增加,从而当时有,即,故,当时,有12分21.解()在x=1处取得极值,解得() 当时,在区间的单调增区间为当时,由()当时,由()知,当时,由()知,在处取得最小值综上可知,若得最小值为1,则a的取值范围是22.解:(I)由已知,切点为(2,0),故有,即又,由已知得联立,解得.所以函数的解析式为 4分(II)因为 令当函数有极值时,则,方程有实数解, 由,得.当时,有实数,在左右两侧均有,故函数无极值当时,有两个实数根情况如下表:+0-0+极大值极小值所以在时,函数有极值;当时,有极大值;当时,有极小值; 12分23.解 ()设需要新建个桥墩,所以 () 由()知, 令,得,所以=64 当064时0. 在区间(64,640)内为增函数,所以在=64处取得最小值,此时,故需新建9个桥墩才能使最小。- 16 -
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100