ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:543KB ,
资源ID:5616298      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5616298.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高三数学专题复习:数学开放性问题.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三数学专题复习:数学开放性问题.doc

1、高三数学专题复习:数学开放性问题 数学开放性问题是近年来高考命题的一个新方向,其解法灵活且具有一定的探索性,这类题型按解题目标的操作模式分为:规律探索型,问题探究型,数学建模型,操作设计型,情景研究型.如果未知的是解题假设,那么就称为条件开放题;如果未知的是解题目标,那么就称为结论开放题;如果未知的是解题推理,那么就称为策略开放题.当然,作为数学高考题中的开放题其“开放度”是较弱的,如何解答这类问题,还是通过若干范例加以讲解. 【例1】 设等比数列的公比为 ,前 项和为 ,是否存在常数 ,使数列 也成等比数列?若存在,求出常数;若不存在,请 明理由. 解 存在型开放题的求解一

2、般是从假设存在入手, 逐步深化解题进程的. 设存在常数, 使数列 成等比数列. (i) 当 时, 代入上式得 即=0 但, 于是不存在常数 ,使成等比数列. (ii) 当 时,, 代 入 上 式 得 . 综 上 可 知 , 存 在 常 数 ,使成等比数列. 注意:等比数列n项求和公式中公比的分类, 极易忘记公比的 情 形,可不要忽视 【例2】 某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用

3、比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元. (1)写出y与x之间的函数关系式; (2)从第几年开始,该机床开始盈利(盈利额为正值); (3 ) 使用若干年后,对机床的处理方案有两种: (i )当年平均盈利额达到最大值时,以30万元价格处理该机床; (ii )当盈利额达到最大值时,以12万元价格处理该机床,问用哪种方案处理较为合算?请说明你的理由. 解:(1) =. (2)解不等式 >0, 得 <x<.

4、 ∵ x∈N,  ∴ 3 ≤x≤ 17. 故从第3年工厂开始盈利. (3)(i) ∵ ≤40 当且仅当时,即x=7时,等号成立. ∴ 到2008年,年平均盈利额达到最大值,工厂共获利12×7+30=114万元. (ii)  y=-2x2+40x-98= -2(x-10)2 +102, 当x=10时,ymax=102. 故到2011年,盈利额达到最大值,工厂共获利102+12=114万元. 解答函数型最优化实际应用题,二、三元均值不等式是常用的工具. 【例3】 已知函数f(x)= (x<-2) (1)求f(x)的反函数f-1(x); (2)设a1=1,=-f-1(an)

5、n∈N),求an; (3)设Sn=a12+a22+…+an2,bn=Sn+1-Sn是否存在最小正整数m,使得对任意n∈N,有bn<成立?若存在,求出m的值;若不存在说明理由. 解:(1) y=, ∵x<-2,∴x= -, 即y=f-1(x)= - (x>0). (2) ∵ , ∴=4. ∴是公差为4的等差数列. ∵a1=1, ∴=+4(n-1)=4n-3. ∵an>0 , ∴an=. (3) bn=Sn+1-Sn=an+12=, 由bn<,得 m>对于n∈N成立. ∵≤5 , ∴m>5,存在最小正数m=6,使得对任意n∈N有b

6、n<成立. 【例4】 已知数列在直线x-y+1=0上. (1) 求数列{an}的通项公式; (2)若函数 求函数f(n)的最小值; (3)设表示数列{bn}的前n项和.试问:是否存在关于n 的整式g(n), 使得对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,说明理由. 解 :(1) (2) , , . 故最小值是 (3), . 故存在关于n的整式使等式对于一切不小2的自然数n恒成立. 事实上, 数列{an}是等差数列, 你知道吗? 【例5】

7、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑. 请问警察的认定对红色出租车公平吗?试说明理由. 解:设该城市有出租车1000辆,那么依题意可得如下信息: 证人所说的颜色(正确率80%) 真 实 颜 色 蓝色 红色 合计 蓝色(85%) 680 170 850 红色(15%) 30 120 15

8、0 合计 710 290 1000 从表中可以看出,当证人说出租车是红色时,且它确实是红色的概率为,而它是蓝色的概率为. 在这种情况下,以证人的证词作为推断的依据对红色出租车显然是不公平的. 本题的情景清新, 涉及到新教材中概率的知识, 上述解法中的列表技术显示了一定的独特性, 在数学的应试复课中似乎是很少见的. 【例6】 甲、乙两人对地的养鸡场连续六年来的规模进行调查研究,得到如下两个不同的信息图: (A)图表明:从第1年平均每个养鸡场出产1万只鸡上升到第6年平均每个养鸡场出产2万只鸡; (B)图表明:由第1年养鸡场个数30个减少到第6年的10个.

9、请你根据提供的信息解答下列问题: (1)第二年的养鸡场的个数及该地出产鸡的总只数各是多少? (2)哪一年的规模最大?为什么? 解 (1)设第n年的养鸡场的个数为,平均每个养鸡场出产鸡万只, 由图(B)可知, =30,且点在一直线上, 从而 由图(A)可知, 且点在一直线上, 于是 =(万只),(万只) 第二年的养鸡场的个数是26个,该地出产鸡的总只数是31.2万只; (2)由(万只), 第二年的养鸡规模最大,共养鸡31.2万只. 有时候我们需要画出图形, 有时候我们却需要从图形中采集必要的信息, 这正反映了一个事物的两个方面. 看来

10、 读图与识图的能力是需要不断提升的. 【例7】 已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足关系式 . (1)求f(0),f(1)的值; (2)判断的奇偶性,并证明你的结论; (3)若,求数列{un}的前n项的和Sn. 解:(1)在中,令得 . 在中,令得 ,有 . (2)是奇函数,这需要我们进一步探索. 事实上 故为奇函数. (2) 从规律中进行探究,进而提出猜想. 由

11、 , ……………………………… 猜测 . 于是我们很易想到用数学归纳法证明. 1° 当n=1时,,公式成立; 2°假设当n=k时,成立,那么当n=k+1时, ,公式仍然成立. 综上可知,对任意成立. 从而 . ,. 故 【例8】 若、, (1)求证:; (2)令,写出、、、的值,观察并归纳出这个数列的通项公式; (3)证明:存在不等于零的常数p,使是等比数列,并求出公比q的值. 解:(1)采用反证法. 若,即, 解得 从而与题设,相矛盾,

12、故成立. (2) 、、、、, . (3)因为 又, 所以, 因为上式是关于变量的恒等式,故可解得、. 【例9】 如图,已知圆A、圆B的方程分别是动圆P与圆A、圆B均外切,直线l的方程为:. (1)求圆P的轨迹方程,并证明:当时,点P到点B的距离与到定直线l距离的比为定值; (2) 延长PB与点P的轨迹交于另一点Q,求的最小值; (3)如果存在某一位置,使得PQ的中点R在l上的射影C,满足求a的取值范围. 解(1)设动圆P的半径为r,则|PA|=r+,|PB| = r + , ∴ |PA| -|PB| = 2. ∴ 点P的轨迹是以A、B为焦点,焦距为4

13、实轴长为2的双曲线的右准线的右支,其方程为 (x ≥1).若 , 则l的方程为双曲线的右准线, ∴点P到点B的距离与到l的距离之比为双曲线的离心率e = 2. (2)若直线PQ的斜率存在,设斜率为k,则直线PQ的方程为y = k ( x-2 )代入双曲线方程, 得 由  , 解得>3.  ∴ |PQ|=.  当直线的斜率存在时,,得,|PQ|=6. ∴ |PQ|的最小值为6.  (3)当PQ⊥QC时,P、C、Q构成Rt△. ∴ R到直线l的距离|RC|= ① 又 ∵  点P、Q都在双曲线上, ∴  . ∴  ,即  . ∴   ②  将②代入①得 ,|PQ|=2-4a≥6. 故有a≤-1. “如果存在”并不意味着一定存在, 如何修改本题使其成为不存在的范例呢? 问题的提出既能延伸我们的思绪, 更能完善我们的知识技能, 无形中使解题能力得到逐渐的提升. 9

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服