ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:189.19KB ,
资源ID:5547790      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5547790.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(初三数学压轴题求最小值.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初三数学压轴题求最小值.docx

1、初三数学压轴题求最小值或最大值线段最值:将军饮马模型一、线段最值1.如图1,在直线l上找一点P,使PAPB最小.(2)如图2,在直线l上找一点P,使PAPB最小.(3)如图3,在直线l上找一点Q,使AQBQ最大.(4)如图4,在直线l上找一点Q,使AQBQ最大.(尺规作图,保留作图痕迹,用铅笔作图.)答案解:(1)如图1所示;(2)如图2所示;(3)如图3所示;(4)如图4所示本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的如图,已知AOB内有一点P,试分别在边

2、0A和OB上各找一点E,F,使得PEF的周长最小.试画图形,并说明理由.答案解:如下图:分别作点P关于OA,OB的对称点P,P连接P,P分别交OA于点E,交OB于F,则点E、F就是使PEF的周长最小的两点;理由:因为P与P关于OA对称,所以PEPE,同理PFPF,所以PEPFEFPEEFPFPP;因为P与P两点之间PP最短,所以PEF的周长此时最小.故答案为:略.借助轴对称的性质将线段进行转化是解题的关键.对称点如图,已知点A、B在MON内,在射线OM、ON上分别求作点C、D,使四边形ABCD的周长最小.答案解:如图所示:C、D为所求点.故答案为:;C、D为所求点.如图,已知点A、B分别在直线

3、l的两侧,试在l上找一点P,使PAPB最大.答案解:作点A关于直线l的对称点A,连AB并延长交直线l于P故答案为:略本题考查的是作图-轴对称变换,比较简单熟知“两点之间线段最短”是解答此题的关键,此类问题要能归结到作对称点的问题,且同侧和最小,两侧差最大解析作点A关于直线l的对称点A,则PA=PA,因而|PA-PB|=|PA-PB|,则当A,B、P在一条直线上时,|PA-PB|的值最大例:已知如图,抛物线y=x2+4x-3过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PDy轴交直线AC于点D(1)求点P在运动的过

4、程中线段PD长度的最大值;(2)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由答案解:(1)令x=0,则y=3,点C(0,3),则直线AC的解析式为y=-x+3,设点P(x,x2-4x+3),PDy轴,点D(x,-x+3),PD=(-x+3)-(x2-4x+3)=-x2+3x=-x-322+94,a=-10,当x=32时,线段PD的长度有最大值94;(2)由抛物线的对称性,对称轴垂直平分AB,MA=MB,由三角形的三边关系,|MA-MC|BC,当M、B、C三点共线时,|MA-MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k0),则k+

5、b0b3,解得k3b3,直线BC的解析式为y=-3x+3,抛物线y=x2-4x+3的对称轴为直线x=2,当x=2时,y=-3x2+3=-3,点M(2,-3),即,抛物线对称轴上存在点M(2,-3),使|MA-MC|最大故答案为:(1)94;(2)抛物线对称轴上存在点M(2,-3),使|MA-MC|最大解析(1)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(2)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法

6、求出直线BC的解析式,再求解即可本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解.解析(1)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(2)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解.2

7、.已知如图,抛物线过点,交轴于点,点是该抛物线上一动点,点从点沿抛物线向点运动(点不与点重合),过点作轴交直线于点。(1)求抛物线的解析式。(2)求点在运动的过程中线段长度的最大值。(3)能否构成直角三角形?若能请直接写出点坐标,若不能请说明理由。(4)在抛物线对称轴上是否存在点使最大?若存在请求出点的坐标,若不存在请说明理由。答案详解(1)因为抛物线过点,所以,得:,解得:,代入得:,故原方程的解为,所以抛物线的解析式是。(2)当时,所以点的坐标是,则直线的解析式是。设,因为,所以,则。因为,当时,线段的长度有最大值是。(3)当时,点与点重合,则。当时,因为抛物线,所以抛物线的顶点是。又因为

8、,所以当点在抛物线顶点时,则。综上所述,或时,能构成直角三角形。(4)由抛物线的对称性得对称轴垂直平分,所以。由三角形的三边关系得,所以当、三点共线时,最大,且是的长度。设直线的解析式是,则,解得,所以直线的解析式是。因为抛物线的对称轴是,所以当时,则点,故在抛物线对称轴上存在点,使最大。解析:本题主要考查二次函数的应用。(1)把点、的坐标代入抛物线解析式中得到、的值,即得到抛物线解析式。(2)求出点的坐标,用待定系数法求出直线的解析式,设,表示出的长,然后利用二次函数的性质求得线段长度的最大值。(3)当,点与点重合,即得到的坐标。求出抛物线顶点坐标,然后判断点在抛物线顶点时,是直角,得到的坐

9、标。(4)由抛物线的对称性得对称轴垂直平分,所以。再根据三角形的三边关系得到当、三点共线时,最大,且是的长度。解出直线的解析式,求得点的坐标即可。初三数学压轴题求最小值1. 在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且ADB60,则线段CD的长的最小值为_22_.解析如图,设圆心为P,连结PA、PB、PC,PEAB于E,A(,0)、B(3,0),E(2,0)又ADB=60,APB=120,PE=1,PA=2PE=2,P(2,1),C(0,5),PC=2,又PD=PA=2,只有点D在线段PC上时,CD最短(点D在别的位置时构成CDP)CD最小值为:2-2;故答案为:2-2。2.直线分别与x轴、y轴相交与点M、N,边长为2的正方形OABC一个顶点O在坐标系的原点,直线AN与MC相交与点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是()A B C D1班答案详解A解:在和中,在以MN为直径的圆上,圆心G为,半径为当圆心G,点P,三点共线时,P到的最小值,这个最小值为所以A选项是正确的.解析:首先证明,推出,推出P在以MN为直径的圆上,所以当圆心G,点P,三点共线时,P到的最小值.求出此时的PC即可.12

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服