ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.22MB ,
资源ID:5547619      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5547619.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(人教版八年级数学上册期末检测试卷含答案.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版八年级数学上册期末检测试卷含答案.doc

1、人教版八年级数学上册期末检测试卷含答案 一、选择题 1、下列四个图形中,轴对称图形有(       )个. A.1 B.2 C.3 D.4 2、石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料,石墨烯中每两个相邻碳原子间的键长为0.000000000142米 ,数字“0.000000000142”用科学记数法表示为(   ) A. B. C. D. 3、下列运算正确的是(       ) A. B. C. D. 4、当时,下列分式中有意义的是(  ) A. B. C. D. 5、下列

2、由左边到右边的变形,是因式分解的为(       ) A. B. C. D. 6、下列分式从左到右的变形正确的是(       ) A. B. C. D. 7、如图,AB=DE,BF=DC,若要使△ABC≌△EDF,则还需补充的条件可以是(       ) A.AC=EF B.∠A=∠E C.∠B=∠E D.AC∥EF 8、若关于x的方程有增根,则的值为(       ) A.2 B.3 C.4 D.6 9、如图,是的外角,平分,若,,则等于(       ) A.40° B.50° C.45° D.55° 二、填空题 10、如图,与是两个全等的等边三角形,,下

3、列结论不正确的是(       ) A. B.直线垂直平分 C. D.四边形是轴对称图形 11、若分式的值为零,则x的值为__. 12、在平面直角坐标系中,点A(﹣3,5)与点B关于x轴对称,则点B的坐标是______. 13、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7,则(1)用含x的式子表示m=___;(2)当y=2时,n的值为_____. 14、计算:(-0.2)100×5101=_______. 15、如图,等腰的底边BC的长为6cm,面积是24cm2,腰AB的垂直平分线EF分别交AB,AC于点E,F,若D为边BC的中点,M为线

4、段EF上一动点,则周长的最小值为______cm. 16、已知一个多边形的内角和是720度,则这个多边形是________边形. 17、已知,____________. 18、如图,AB=4cm,AC=BD=3cm.∠CAB=∠DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).设点Q的运动速度为xcm/s,若使得△ACP与△BPQ全等.x的值为____. 三、解答题 19、因式分解: (1); (2). 20、解分式方程:. 21、如图,点B、C、D、F在一条直线上,FD=BC,DE

5、=CA,EF=AB,求证:EF∥AB. 22、已知在四边形ABCD中,. (1)如图1,若BE平分,DF平分的邻补角,请写出BE与DF的位置关系并证明; (2)如图2,若BF、DE分别平分、的邻补角,判断DE与BF位置关系并证明; (3)如图3,若BE、DE分别五等分、的邻补角(即,),求度数. 23、在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,求降价后每枝玫瑰的售价是多少元? 24、数学家波利亚说过:“为了得到一个方程,我们必须把同一个量一两种

6、不同的方法表示出来,即将一个量算两次,从而建立相等关系,”这就是“算两次”原理,也称为富比尼(G.Fubini)原理,例如:对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.计算如图1的面积,把图1看作一个大正方形,它的面积是(a+b)2;如果把图1看作是由2个长方形和2个小正方形组成的,它的面积为a2+2ab+b2,由此得到(a+b)2=a2+2ab+b1、 (1)如图2,正方形ABCD是由四个边长分别为a,b的长方形和中间一个小正方形组成的,用不同的方法对       图2的面积进行计算,你发现的等式是 (用a,b表示) (2)应用探索结果解决问题:

7、 已知:两数x,y满足x+y=7,xy=6,求x-y的值. (3)如图3,四个三角形都是全等的直角三角形,用不同的代数式表示大正方形的面积,由此得到的等式为 ;(用a,b,c表示) (4)解决问题:若a=n2-1,b=2n,c=n2+1,请通过计算说明a、b、c满足上面结论. 25、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE. (1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度; (2)设,. ①如图2,当点在线段BC上移动,则,

8、之间有怎样的数量关系?请说明理由; ②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 一、选择题 1、C 【解析】C 【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C 【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键. 2、B 【解析】B 【分析】科学记数法的表示形式为的形式,其中,n为整

9、数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数. 【详解】解:数字“0.000000000142”用科学记数法表示为. 故选:B. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中n为整数,正确确定a的值以及n的值是解决问题的关键. 3、D 【解析】D 【分析】直接利用幂的乘方和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案. 【详解】解:A、,故此选项错误; B、,故此选项错误; C、,故此选项错误; D、,故此选项正

10、确; 故选:D. 【点睛】此题主要考查了幂的乘方和积的乘方运算法则、同底数幂的乘除法,正确掌握相关运算法则是解题关键. 4、C 【解析】C 【分析】根据分式有意义的条件是分母不为,逐项对选项进行判定即可. 【详解】解:A、当时,的分母,该选项不符合题意; B、当时,的分母,该选项不符合题意; C、当时,的分母,该选项符合题意; D、当时,的分母,该选项不符合题意; 故选:C. 【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是分母不为是解决问题的关键. 5、C 【解析】C 【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作

11、分解因式,据此即可一一判定. 【详解】解:A.是多项式乘以多项式,和因式分解正好相反,故不是分解因式; B.是利用完全平方公式进行运算,故不是分解因式; C.是利用提公因式法分解因式,故是分解因式; D.结果中含有差的形式,故不是分解因式; 故选:C. 【点睛】此题考查了因式分解的意义,熟练掌握和运用因式分解的判定方法是解决本题的关键. 6、C 【解析】C 【分析】根据分式的性质可得到A、B、D都不一定正确,而C中k≠0,根据分式的基本性质可判断其正确. 【详解】解:A、(m≠0),所以A选项不正确,不符合题意; B、若c=0,则,所以B选项不正确,不符合题意; C、,

12、所以C选项正确,符合题意; D、,所以D选项不正确,不符合题意. 故选:C. 【点睛】本题考查了分式的基本性质:分式的分子和分母同乘以(或除以)一个不为0的代数式,分式的值不变. 7、A 【解析】A 【分析】根据,即可推出,根据平行线的性质得出,再根据全等三角形的判定定理逐个判断即可. 【详解】∵, ∴, 即, 选项A:,,,符合全等三角形的判定定理,能推出 △ABC≌△EDF,故本选项符合题意; 选项B:,,,不符合全等三角形的判定定理,不能推出 △ABC≌△EDF,故本选项不符合题意; 选项C:,,∠B=∠E,不符合全等三角形的判定定理,不能推出 △ABC≌△

13、EDF,故本选项不符合题意; 选项D:∵AC∥EF ∴, ,,,不符合全等三角形的判定定理,不能推出 △ABC≌△EDF,故本选项不符合题意; 故选:A. 【点睛】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解答本题的关键,在此提醒大家三角形的判定定理有,,,,两直角三角形全等还有等. 8、B 【解析】B 【分析】分式方程去分母转化为整式方程,把增根x=-1代入整式方程计算求出a的值,代入原式计算即可求出值. 【详解】解:分式方程去分母得:ax2+3x+3(x+1)=2x(x+1), 把x=-1代入整式方程得:a=3, 则2a-3=6-3

14、2、 故选:B. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 9、D 【解析】D 【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可. 【详解】解:∵∠A=70°,∠B=40°, ∴∠ACD=∠A+∠B=110°, ∵CE平分∠ACD, ∴∠ECD=∠ACD=55°, 故选:D. 【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键. 二、填空题 10、A 【解析】A 【分析】根据与是两个全等的等边三角形,可得到,,,然后结合,

15、先计算出的大小,便可计算出的大小,从而判定出AD与BC的位置关系及BE与DC的关系,同时也由于与是等腰三角形,也容易确定四边形ABCD的对称性. 【详解】(1)∵与是两个全等的等边三角形 ∴,, ∴ ∵ ∴ ∴, ∴,所以选项A错误; (2)由(1)得: ∴ ∴,所以选项C正确; (3)延长BE交CD于点F,连接BD. ∵, ∴ ∴ ∴ 即 在与中 ∴ ∴ ∴,综上,BE垂直平分CD,所以答案B正确; (4)过E作,由得 而和是等腰三角形,则MN垂直平分AD、BC,所以四边形ABCD是軕对称图形,所以选项B正确. 故选:A 【

16、点睛】本题考查的知识点主要是等边三角形的性质,全等三角形的性质与判定,平行四边形的判定及其轴对称图形的定义,添加辅助线构造全等三角形是本题的难点. 11、5 【分析】根据分式值为零的条件列式计算即可. 【详解】解:∵分式的值为零, ∴5-=0,x+5≠0, 解得:x=4、 故答案为:4、 【点睛】本题考查的是分式值为零的条件,分式值为零的条件是分子等于零且分母不等于零. 12、A 【解析】(-3,-5) 【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可. 【详解】解:∵点A(-3,5)与点B关于x轴对称, ∴点B的坐标为(-3,-5). 故答案为

17、3,-5). 【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数. 13、          【分析】(1)根据题意,可以用含x的式子表示出m; (2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值. 【详解】解:(1)由图可得, 故答案为:; (2)∵,, ∴, 解得,, ∴, 故答案为:. 【点睛】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代

18、数式及分式方程及求出方程的解. 14、5 【分析】直接利用积的乘方运算法则即可得到答案. 【详解】解: = = = =5 故答案为:4、 【点睛】此题考查了积的乘方运算,正确掌握相关运算法则是解题关键. 15、11 【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时, 有最小值,然后依据三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三 【解析】11 【分析】连接AD交EF于点,连接AM,由线段垂直平分线的性质可知AM=MB,则,故此当A、M、D在一条直线上时, 有最小值,然后依据三角形三线合一的性

19、质可证明AD为△ABC底边上的高线,依据三角形的面积为24可求得AD的长; 【详解】连接AD交EF于点,连接AM, ∵△ABC是等腰三角形,点D是BC边的中点, ∴, ∵, ∴, ∵EF是线段AB的垂直平分线, ∴AM=MB, ∴, ∴当点M位于时,有最小值,最小值为8, ∴△BDM的周长的最小值为cm; 故答案是11cm. 【点睛】本题主要考查了三角形综合,结合垂直平分线的性质计算是关键. 16、六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考

20、查多边形的内角和,掌握多边形的内角和公式(n 【解析】六 【分析】根据多边形内角和公式进行解答即可. 【详解】解:设多边形为n边形, 则(n-2)·180=720, 解得n=6 故答案为:六. 【点睛】本题考查多边形的内角和,掌握多边形的内角和公式(n-2)·180°是解题关键. 17、47 【分析】利用完全平方公式计算,即可求解. 【详解】解:∵, ∴, ∴, ∴, ∴. 故答案为:47 【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键. 【解析】47 【分析】利用完全平方公式计算,即可求解. 【详解】解:∵, ∴, ∴,

21、 ∴, ∴. 故答案为:47 【点睛】本题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解题的关键. 18、1或1.5##1.5或1##1或##或1 【分析】根据全等三角形的判定得出两种情况,求出每种情况的x值即可. 【详解】解:要使△ACP与△BPQ全等,有两种情况:①AP=BQ, ∵点P在线段AB上以 【解析】1或1.5##1.5或1##1或##或1 【分析】根据全等三角形的判定得出两种情况,求出每种情况的x值即可. 【详解】解:要使△ACP与△BPQ全等,有两种情况:①AP=BQ, ∵点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由

22、点B向点D运动.它们运动的时间为t(s).设点Q的运动速度为xcm/s, ∴x=1; ②AC=BQ=3cm,AP=BP=AB=×4cm=2cm, ∴时间为=2秒, 即x==1.5, 所以x的值是1或1.5, 故答案为:1或1.4、 【点睛】本题考查了全等三角形的判定定理,能求出符合的所有情况是解此题的关键. 三、解答题 19、(1) (2) 【分析】(1)先提公因式,再利用平方差公式继续分解即可解答; (2)先提公因式,再利用完全平方公式继续分解即可解答. (1) 解: ; (2) 解: . 【点睛】本题考查了提公因 【解析】(1) (2) 【分析】

23、1)先提公因式,再利用平方差公式继续分解即可解答; (2)先提公因式,再利用完全平方公式继续分解即可解答. (1) 解: ; (2) 解: . 【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式. 20、原方程无解. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解. 【详解】将分式两边同时乘以可得:, 可化为: ,即 经检验使公分母, 是原分式方程的增根 【解析】原方程无解. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式

24、方程的解. 【详解】将分式两边同时乘以可得:, 可化为: ,即 经检验使公分母, 是原分式方程的增根舍去, 原方程无解. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 21、见解析 【分析】先证△ABC≌△EFD(SSS),得出∠B=∠F,再由平行线的判定即可证明. 【详解】证明:在△ABC和△EFD中, , ∴△ABC≌△EFD(SSS), ∴∠B=∠F, ∴AB∥F 【解析】见解析 【分析】先证△ABC≌△EFD(SSS),得出∠B=∠F,再由平行线的判定即可证明. 【详解】证明:在△ABC和△EFD中, , ∴△ABC≌△E

25、FD(SSS), ∴∠B=∠F, ∴AB∥FE. 【点睛】本题考查了全等三角形的判定与性质、平行线的判定等知识;证明△ABC≌△EFD是解题的关键. 22、(1),证明见解析;(2),证明见解析;(3)54° 【分析】(1)结论:BE⊥DF,如图1中,延长BE交FD的延长线于G,证明∠DEG+∠EDG=90°即可; (2)结论:DE//BF,如图2中, 【解析】(1),证明见解析;(2),证明见解析;(3)54° 【分析】(1)结论:BE⊥DF,如图1中,延长BE交FD的延长线于G,证明∠DEG+∠EDG=90°即可; (2)结论:DE//BF,如图2中,连接BD,只要证明∠

26、EDB+∠FBD=180°即可; (3)延长DC交BE于H.由(1)得:,利用五等分线的定义可求,由三角形的外角性质得,代入数值计算即可. 【详解】(1). 证明:延长BE、FD交于G.在四边形ABCD中, ,, . ,. 平分,DF平分, ,, , ∵∠ABE+∠AEB=90°,∠AEB=∠DEG,∠FDN=∠EDG, ∴∠DEG+∠EDG=90°, ∴∠EGD=90°,即BE⊥DF. (2). 证明:连接DB. ,. 又,. 、DF平分、的邻补角, ,, . 在中, , , ,. (3)延长DC交BE于H.由(1)得: . 、D

27、E分别五等分、的邻补角, , 由三角形的外角性质得, ,, , . 【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线. 23、1元 【分析】设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论. 【详 【解析】1元 【分析】设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+1)元,根据降价后30元可购买玫瑰的数量是原来购买玫瑰数量的2倍,即可得出关于x的分式方程,解之经

28、检验后即可得出结论. 【详解】解:设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是元, 根据题意得:, 解得:x=1, 经检验,x=1是原分式方程的解,且符合题意. 答:降价后每枝玫瑰的售价是1元. 【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 24、(1)(a+b)²=(a-b)²+4ab (2)±5 (3)c²=2ab+(a-b)² (4)见解析 【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成,分别表 【解析】(1)(a+b)²=(a-b)²+4ab (2)±5 (3)c²=2ab

29、a-b)² (4)见解析 【分析】(1)可以把图2看作一个大正方形组成,也可以看作是由4个长方形和1个小正方形组成,分别表示出面积可得等式; (2)根据(1)中所得等式,代入计算即可; (3)可以把图3看作一个大正方形,也可以看作是由4个全等的直角三角形和1个小正方形组成,分别表示出面积可得等式; (4)分别求出a²,b²,c²,然后进行计算即可. (1) 解:把图2看作一个大正方形组成,面积为(a+b)²,把图2看作是由4个长方形和1个小正方形组成,面积为:(a-b)²+4ab, 故发现的等式是:(a+b)²=(a-b)²+4ab; (2) 解:由(1)得(a+b)²

30、a-b)²+4ab, ∴(x+y)²=(x-y)²+4xy, ∵x+y=7,xy=6, ∴7²=(x-y)²+24, ∴x-y=±5; (3) 解:把图3看作一个大正方形,面积为c²,把图3看作是由4个全等的直角三角形和1个小正方形组成,面积为:+(a-b)²=2ab+(a-b)², 故发现的等式是:c²=2ab+(a-b)²; (4) 解:∵a=n2-1,b=2n,c=n2+1, ∴a²=(n²-1)²=n⁴+1-2n²,b²=(2n)²=4n²,c²=(n²+1)²=n⁴+1+2n², ∴a²+b²=n⁴+2n²+1=c², ∴a²+b²=c², ∴(a+b)

31、²-2ab=c², ∴c²=(a-b)²+2ab. 【点睛】本题主要考查了完全平方公式的几何背景,解题时注意数形结合思想的运用. 25、(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB= 【解析】(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β. 【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题; (2)①证明△BAD

32、≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题; ②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题. 【详解】解:(1)∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DAE=∠BAC, ∴∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△BAD≌△CAE(SAS) ∴∠ABC=∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 故答案为:; (2)①. 理由:∵, ∴. 即. 又, ∴. ∴. ∴. ∴. ∵, ∴. ②如图:当点D在射线BC上时,α+β=180°

33、连接CE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 在△ABD和△ACE中, , ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, 在△ABC中,∠BAC+∠B+∠ACB=180°, ∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°, 即:∠BCE+∠BAC=180°, ∴α+β=180°, 如图:当点D在射线BC的反向延长线上时,α=β.连接BE, ∵∠BAC=∠DAE, ∴∠BAD=∠CAE, 又∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE, ∴∠ABD=∠ACE=∠ACB+∠BCE, ∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°, ∵∠BAC=180°-∠ABC-∠ACB, ∴∠BAC=∠BCE. ∴α=β; 综上所述:点D在直线BC上移动,α+β=180°或α=β. 【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服