ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:93.51KB ,
资源ID:5504497      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5504497.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(向量的数乘运算及其几何意义教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

向量的数乘运算及其几何意义教学设计.doc

1、2.2.3向量的数乘运算及其几何意义1. 知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。熟练运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线平行等问题。2.过程与方法: 理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是否共线。3.态度情感与价值观: 通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程能力,合作释疑过程中合作交流的能力。激发学生学习数学的兴趣和积极性,陶冶学生的情感,培养学生实事求是的科学态度,勇于创新的精神。(一)教学重难点重点:掌握实数与向量的积的运算律;理解向量共线定理,能够运用定理解决共线等

2、问题。难点:向量共线定理的探究及其应用。教学过程:教学环节教学内容师生互动设计意图复习提问复习提问一、导入新课创设情境 (1)前两节我们介绍了解了向量的加法和减法,其中“加法”我们要牢固掌握“三角形法则”和“平行四边形法则”;例如:平面内有向量和,: 和 当顺次首尾连结时:与和向量即为图中所示;(副板书)当重合起点或终点时,图略,和向量应用“平行四边形法则”求得;而且向量的减法我们可以看成一个向量加上另一个向量的等模、反向、或记住口诀“连结终点,指向被减”直接由代数形式求得结果。例如:(2)下面我们来看这么一道题:师生互答与教师讲解结合师生互答与教师讲解结合复习旧知识,引出新知识复习旧知识引出

3、新知识定理形成运算率的形成1例:已知如图向量为非零向量,试用作图方式表示和+() (投影) 一.向量数乘的相关概念及性质:1.向量数乘(实数和向量相乘)的定义:实数和向量的乘积是一个向量,记作,且的长.(而且我们可以根据刚才的例题总结出这样的结论:)()的方向当2.实数和向量相乘所满足的运算率:(1); (2);(3) (分配率). 首先我们抓住它的特点,结合几何表示,类比实数乘法,很容易得=3这一点学生是容易理解并接受的,从而引出向量数乘的相关概念及性质,学生也容易接受。学生通过观察、比较、抽象、概括出实数与向量相乘的几何表示与代数表示法。发展学生的理性思维的能力。应用举例例题1练习:计算(1) ; (2) (3) CEABD例2:如图,已知、,试判断与是否共线? 学生练习例2是学生需要锻炼的能力之一,判断是否共线,能否找到唯一实数。 通过分段设问,引导学生体会解题思路的形成过程,培养学生独立思考分析、解决问题的能力布置作业书后练习A组题目和B组1,2小题.学生独立完成巩固所学知识方法

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服