ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:359.01KB ,
资源ID:5486749      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5486749.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高三数学三角函数复习_教案.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三数学三角函数复习_教案.doc

1、三角函数模块专题复习任意角的三角函数及诱导公式 陈云峰一课标要求:1任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化;2三角函数(1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;(2)借助单位圆中的三角函数线推导出诱导公式(, 的正弦、余弦、正切)。二要点精讲1任意角的概念旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点。规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。2终边相同的角、象限角、轴线角3弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可

2、以省略不写)。角有正负零角之分,它的弧度数也应该有正负零之分.角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径。角度制与弧度制的换算主要抓住。弧度与角度互换公式:1rad 1(rad)。弧长公式:(是圆心角的弧度数),扇形面积公式:。【注意】:无论用“弧度”还是“角度”作单位,角的大小是一个与半径的大小无关的定值;在解题过程中“弧度”与“角度”不能混用,如或都不规范。a的终边P(x,y)Oxy4三角函数定义利用单位圆定义任意角的三角函数,设是一个任意角,它的终边与单位圆交于点,那么:(1)叫做的正弦,记做,即;(2)叫做的余弦,记做,即;(3)叫做的正切,记做,即。【注意】:三角函数

3、值的符号满足:“一全正、二正弦、三正切、四余弦”的规律。5三角函数线:正弦线、余弦线、正切线。【注意】: 正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负。 当角终边在x轴上时,正切线变成一个点,当角终边在y轴上时,正切线不存在。6同角三角函数关系式(1)平方关系:(2)倒数关系:tancot=1,(3)商数关系:【注意】:“同角”有两层含义:一是“角相同”,二是对“任意”一个角关系式都成立。同角三角函数的基本关系式必须在定义域允许的范围内成立。7诱导公式总口诀为:“奇变偶不变,符号看象限”。其中“奇、偶”是指中的k的奇偶性;“符号”是把任意角当成

4、锐角时,原函数值的符号。【注意】:应用诱导公式,重点是“函数名称”和“正负号”的正确判断。用诱导公式求任意角的三角函数值的一般步骤:负化正、大化小、小化锐、锐求值。在运用诱导公式时,要仔细体会其中的数学思想化归思想,并在学习过程中能自觉地运用。诱导公式起着变名、变号、变角等作用,在三角有关问题(化简、求值、证明)中常使用。三典例解析题型1:象限角例1已知角;(1)在区间内找出所有与角有相同终边的角;(2)集合,那么两集合的关系是什么?解析:(1)所有与角有相同终边的角可表示为:,则令 , 得 解得 从而或 代回或(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或

5、四个象限平分线上的角的集合,从而:。【点评】:从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;可对整数的奇、偶数情况展开讨论。例2若sincos0,则在( )A第一、二象限 B第一、三象限C第一、四象限 D第二、四象限例3已知“是第三象限角,则是第几象限角?解法一:因为是第三象限角,所以,当k=3m(mZ)时,为第一象限角;当k= 3m1(mZ)时,为第三象限角,当k= 3m2(mZ)时,为第四象限角,故为第一、三、四象限角。解法二:用画象限图(几何法)把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、,

6、并循环一周,则原来是第几象限的符号所表示的区域即为 (nN*)的终边所在的区域。【点评】:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法。题型2:三角函数定义例4已知角的终边过点,求的四个三角函数值。例5已知角的终边上一点,且,求的值。题型3:诱导公式例6( )()()()()解: 故选D;【点评】:此题重点考察各三角函数的关系;熟悉三角公式,化切为弦;以及注意例7化简:(1);(2)。解析:当时,原式。当时,原式。【点评】:关键抓住题中的整数是表示的整数倍与公式一中的整数有区别,所以必须把分成奇数和偶数两种类型,分别加以讨论。题型4:同角三角函数的基本关系式例8

7、证明:;分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证,只要证AD=BC,从而将分式化为整式证明:左边= = = = = =右边【点评】:在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多。同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系。四、课堂练习:1、在中,若,则 2、cos43cos77+sin43cos167的值为 .3. 锐角中,且,则的最大值为 4. 设则的值等于_ .5. 在ABC中,BC=1,当ABC的面积等于时,_ .6. 若的三个内角的正弦值分别等于的三个内角的余弦值

8、,则的三个内角从大到小依次可以为 (写出满足题设的一组解) ,另两角不惟一,但其和为7. 在ABC中,内角A、B、C所对的边分别为a、b、c,给出下列结论:若ABC,则;若;必存在A、B、C,使成立;若,则ABC必有两解.其中,真命题的编号为 .(写出所有真命题的编号)8、 求证:。五思维总结1几种终边在特殊位置时对应角的集合为:角的终边所在位置角的集合X轴正半轴Y轴正半轴X轴负半轴Y轴负半轴X轴Y轴坐标轴2、2之间的关系。若终边在第一象限则终边在第一或第三象限;2终边在第一或第二象限或y轴正半轴。若终边在第二象限则终边在第一或第三象限;2终边在第三或第四象限或y轴负半轴。若终边在第三象限则终边在第二或第四象限;2终边在第一或第二象限或y轴正半轴。若终边在第四象限则终边在第二或第四象限;2终边在第三或第四象限或y轴负半轴。3学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,。第 7 页 共 7 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服