ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:35.51KB ,
资源ID:5484668      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5484668.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(等差数列的前n项和教学设计.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

等差数列的前n项和教学设计.doc

1、等差数列的前n项和教学设计 高中数学第二组 匡颖教材分析等差数列的前项和是数列的重要内容,也是数列研究的基本问题在现实生活中,等差数列的求和是经常遇到的一类问题等差数列的求和公式,为我们求等差数列的前项和提供了一种重要方法教材首先通过具体的事例,探索归纳出等差数列前项和的求法,接着推广到一般情况,推导出等差数列的前项和公式为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前项和公式解决问题这节内容重点是探索掌握等差数列的前项和公式,并能应用公式解决一些实际问题,难点是前项和公式推导思路的形成教学目标1. 通过等差数列前项

2、和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力2. 理解和掌握等差数列的前项和公式,体会等差数列的前项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力3. 在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法任务分析这节内容主要涉及等差数列的前项公式及其应用对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子123100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第项与倒数第项的和等于首项与末项的和这个规律,进而发现求等差数列前

3、项和的一般方法,这样自然地过渡到一般等差数列的求和问题对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前项和与等差数列的项、项数、公差之间的关系为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式对于等差数列前项和公式和二次函数之间的联系,可引导学生拓展延伸教学设计一、问题情景1. 在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环形的石板铺成,最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第

4、二圈开始,每一圈比前一圈多9块,共有9圈.请问: )前9圈一共有多少块石板?2. 在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“123100?”时,很快地就算出了结果他是怎么算出来的呢?他发现11002993975051101,于是121001015050503. 受高斯算法启发,你能否求出12399的和高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前项和?二、建立模型1. 数列的前项和定义对于等差数列n,我们称12n为数列n的前项和,用Sn表示,即Sn12n2. 等差数列的求和公式(1)如何用高斯算法来推导等差数列的前项和公式?对于公差为的等差数列n:Sna1a2a

5、3an1an Snanan1an2a2a1 由此得到等差数列的前项和公式小结:这种方法称为倒序相加法,是数列求和的一种常用方法(2)结合通项公式n1(1),又能得怎样的公式?(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质?学生讨论后,教师总结:相同点是利用二者求和都须知道首项1和项数;不同点是前者还须要知道n,后者还须要知道因此,在应用时要依据已知条件合适地选取公式公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第项与倒数第项的和都等于首、末两项之和,后者反映了等差数的前项和是关于的没有常数项的“二次函数”三、解释应用例题例1、在我国古代,9是数字之极,代表尊贵之意,

6、所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环形的石板铺成,最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈.请问: )前9圈一共有多少块石板? 解 由等差数列前n项和公式,得前9圈一共有石板答 :第9圈有81块石板,前9圈一共有405块石板.例2、已知一个等差数列an的前10项的和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?解由题意知S10310,S201 220,将它们代入公式Snna1d,得到解方程得Snn463n2n.另解:S10310a1a1062S201 220a1a20122得:a20a1060,10d60,d6,a14.Snna1d3n2n.反思与感悟(1)在解决与等差数列前n项和有关的问题中,要注意方程思想和整体思想的运用;(2)构成等差数列前n项和公式的元素有a1,d,n,an,Sn,知其三能求其二练习训练1在等差数列an中,已知d2,an11,Sn35,求a1和n.四.小结:1.推导等差数列前 项和公式的思路; 2.公式的应用中的数学思想.五作业 P17第3题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服