2、<2时,代数式|a-2|+|1-a|的值是( )
A.-1 B.1 C.3 D.-3
5.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )
A.4 B.6 C.7 D.10
6.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )
A.菱形 B.对角线互相垂直的四边形
C.矩形 D.对角线相等的四边形
7.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一
3、元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8 B.10 C.12 D.14
9.如图,函数 y1=﹣2x 与 y2=ax+3 的图象相交于点 A(m,2),则关于 x 的不等式﹣2x>ax+3 的解集是( )
A.x>2 B.x<2 C.x>﹣1 D.x<﹣1
10.如图,在下列条件中,不能证明△ABD≌△ACD的是( ).
A.BD=DC,AB=AC
4、 B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC
二、填空题(本大题共6小题,每小题3分,共18分)
1.9的平方根是__________.
2.因式分解:____________.
3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.
4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.
5.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6
5、则k=_________.
6.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为__________.
三、解答题(本大题共6小题,共72分)
1.解方程:
2.已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
3.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
6、
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
4.如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
5.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:
等级
非常了解
比较了解
基本了解
7、
不太了解
人数(人)
24
72
18
(1)求的值;
(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?
6.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的
8、售价降低多少元?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、D
3、C
4、B
5、B
6、D
7、C
8、B
9、D
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、±3
2、
3、0或1
4、42
5、-3
6、(﹣1,5)
三、解答题(本大题共6小题,共72分)
1、
2、(1)k>;(2).
3、(1)略;(2)结论:四边形ACDF是矩形.理由略.
4、(2)略;(2)四边形EBFD是矩形.理由略.
5、(1)6 (2)1440人
6、(1)100+200x;(2)1.
6 / 6