ImageVerifierCode 换一换
格式:DOC , 页数:118 ,大小:2.89MB ,
资源ID:4943008      下载积分:20 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4943008.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(题库.试卷—--工程力学试题库.试卷及解答.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

题库.试卷—--工程力学试题库.试卷及解答.doc

1、工程力学试题库第一章 静力学基本概念1. 试写出图中四力的矢量表达式。已知:F1=1000N,F2=1500N,F3=3000N,F4=2000N。 解:F=Fx+Fy=Fxi+FyjF1=1000N=-1000Cos30i-1000Sin30jF2=1500N=1500Cos90i- 1500Sin90jF3=3000N=3000 Cos45i+3000Sin45jF4=2000N=2000 Cos60i-2000Sin60j2. A,B两人拉一压路碾子,如图所示,FA=400N,为使碾子沿图中所示的方向前进,B应施加多大的力(FB=?)。 解:因为前进方向与力FA,FB之间均为45夹角,要

2、保证二力的合力为前进方向,则必须FA=FB。所以:FB=FA=400N。3.试计算图中力F对于O点之矩。 解:MO(F)=Fl4.试计算图中力F对于O点之矩。 解:MO(F)=05.试计算图中力F对于O点之矩。 解: MO(F)= Flsin6. 试计算图中力F对于O点之矩。 解: MO(F)= Flsin7. 试计算图中力F对于O点之矩。 解: MO(F)= -Fa8.试计算图中力F对于O点之矩。解:MO(F)= F(lr)9. 试计算图中力F对于O点之矩。解: 10.求图中力F对点A之矩。若r1=20cm,r2=50cm,F=300N。解: 11.图中摆锤重G,其重心A点到悬挂点O的距离为

3、l。试求图中三个位置时,力对O点之矩。解: 1位置:MA(G)=0 2位置:MA(G)=-Glsin 3位置:MA(G)=-Gl 12.图示齿轮齿条压力机在工作时,齿条BC作用在齿轮O上的力Fn=2kN,方向如图所示,压力角0=20,齿轮的节圆直径D=80mm。求齿间压力Fn对轮心点O的力矩。解:MO(Fn)=-FncosD/2=-75.2Nm受力图13.画出节点A,B的受力图。 14. 画出杆件AB的受力图。 15. 画出轮C的受力图。 16.画出杆AB的受力图。17. 画出杆AB的受力图。18. 画出杆AB的受力图。19. 画出杆AB的受力图。20. 画出刚架AB的受力图。21. 画出杆A

4、B的受力图。22. 画出杆AB的受力图。23.画出杆AB的受力图。24. 画出销钉A的受力图。25. 画出杆AB的受力图。物系受力图26. 画出图示物体系中杆AB、轮C、整体的受力图。27. 画出图示物体系中杆AB、轮C的受力图。28.画出图示物体系中杆AB、轮C1、轮C2、整体的受力图。29. 画出图示物体系中支架AD、BC、物体E、整体的受力图。30. 画出图示物体系中横梁AB、立柱AE、整体的受力图。31. 画出图示物体系中物体C、轮O的受力图。32. 画出图示物体系中梁AC、CB、整体的受力图。 33.画出图示物体系中轮B、杆AB、整体的受力图。34.画出图示物体系中物体D、轮O、杆A

5、B的受力图。35.画出图示物体系中物体D、销钉O、轮O的受力图。 第二章 平面力系1. 分析图示平面任意力系向O点简化的结果。已知:F1=100N,F2=150N,F3=200N,F4=250N,F=F/=50N。 解:(1)主矢大小与方位:F/RxFxF1cos45+F3+F4cos60100Ncos45+200N+250cos60395.7NF/RyFyF1sin45-F2-F4sin60100Nsin45-150N-250sin60-295.8N(2)主矩大小和转向:MOMO(F)MO(F1)+MO(F2)+MO(F3)+MO(F4)+m 0-F20.3m+F30.2m+F4sin600

6、.1m+F0.1m 0-150N0.3m+200N0.2m+250Nsin600.1m+50N0.1m 21.65Nm(Q)向O点的简化结果如图所示。 2.图示起重吊钩,若吊钩点O处所承受的力偶矩最大值为5kNm,则起吊重量不能超过多少? 解:根据O点所能承受的最大力偶矩确定最大起吊重量G0.15m5kNm G33.33kN3. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。 解:(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系,列平衡方程:Fx0, -FAB+FACcos600Fy0, FACsin60-G0(3

7、)求解未知量。 FAB0.577G(拉) FAC1.155G(压)4.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。 解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系,列平衡方程:Fx0, FAB-FACcos600Fy0, FACsin60-G0(3)求解未知量。 FAB0.577G(压) FAC1.155G(拉)5. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。 解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系,列平衡方程:F

8、x0, -FAB+Gsin300Fy0, FAC-G cos300(3)求解未知量。 FAB0.5G(拉) FAC0.866G(压)6. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。 解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系,列平衡方程: Fx0, -FAB sin30+FAC sin300 Fy0, FAB cos30+FACcos30-G0(3)求解未知量。 FABFAC0.577G(拉)7. 图示圆柱A重力为G,在中心上系有两绳AB和AC,绳子分别绕过光滑的滑轮B和C,并分别悬挂重力为G1和G2的

9、物体,设G2G1。试求平衡时的角和水平面D对圆柱的约束力。 解(1)取圆柱A画受力图如图所示。AB、AC绳子拉力大小分别等于G1,G2。 (2)建直角坐标系,列平衡方程: Fx0, -G1+G2cos0 Fy0, FNG2sin-G0(3)求解未知量。8.图示翻罐笼由滚轮A,B支承,已知翻罐笼连同煤车共重G=3kN,=30,=45,求滚轮A,B所受到的压力FNA,FNB。有人认为FNA=Gcos,FNB=Gcos,对不对,为什么? 解(1)取翻罐笼画受力图如图所示。 (2)建直角坐标系,列平衡方程:Fx0, FNA sin-FNB sin0Fy0, FNA cos+FNB cos-G0(3)求

10、解未知量与讨论。将已知条件G=3kN,=30,=45分别代入平衡方程,解得:FNA2.2kN FNA1.55kN有人认为FNA=Gcos,FNB=Gcos是不正确的,只有在=45的情况下才正确。9.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。 解(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系如图,列平衡方程:Fx0, -FAB-Fsin45+Fcos600Fy0, -FAC-Fsin60-Fcos450(3)求解未知量。将已知条件F=G=2kN代入平衡方程,解得:FAB-0.414

11、kN(压) FAC-3.15kN(压)10. 图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。 解:(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。 (2)建直角坐标系如图,列平衡方程: Fx0, -FAB-FACcos45-Fsin300 Fy0, -FACsin45-Fcos30-F0(3)求解未知量。 将已知条件F=G=2kN代入平衡方程,解得:FAB2.73kN(拉) FAC-5.28kN(压) 11. 相同的两圆管置于斜面上,并用一铅垂挡板AB挡住,如图所示。每根圆管重4kN,求挡板所受的压力。若

12、改用垂直于斜面上的挡板,这时的压力有何变化? 解(1)取两圆管画受力图如图所示。(2)建直角坐标系如图,列平衡方程: Fx0, FN cos30Gsin30Gsin300(3)求解未知量。 将已知条件G=4kN代入平衡方程,解得:F N4.61kN 若改用垂直于斜面上的挡板,这时的受力上图右 建直角坐标系如图,列平衡方程:Fx0, FNGsin30Gsin300 解得:F N4kN12. 构件的支承及荷载如图所示,求支座A,B处的约束力。 解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程: Mi0 15kNm-24kNm+FA6m0(3)求解未知量。FA1.5k

13、N() FB1.5kN13. 构件的支承及荷载如图所示,求支座A,B处的约束力。解 (1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程: Mi0, FAlsin45-Fa0(3)求解未知量。 14. 构件的支承及荷载如图所示,求支座A,B处的约束力。 解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。 (2)列平衡方程: Mi0, 20kN5m50kN3mFA2m0(3)求解未知量。 FA25kN() FB25kN()15. 图示电动机用螺栓A,B固定在角架上,自重不计。角架用螺栓C,D固定在墙上。若M=20kNm,a=0.3m,b=0.6m,求螺栓A

14、,B,C,D所受的力。 解螺栓A,B受力大小(1)取电动机画受力图如图所示。螺栓A,B反力构成一力偶。(2)列平衡方程: Mi0, MFAa0(3)求解未知量。 将已知条件M=20kNm,a=0.3m代入平衡方程,解得:FAFB66.7kN螺栓C,D受力大小(1)取电动机和角架画受力图如图所示。螺栓C,D反力构成一力偶。(2)列平衡方程:Mi0, MFCb0(3)求解未知量。将已知条件M=20kNm,b=0.6m代入平衡方程,解得: FCFD33.3kN16. 铰链四连杆机构OABO1在图示位置平衡,已知OA=0.4m,O1B=0.6m,作用在曲柄OA上的力偶矩M1=1Nm,不计杆重,求力偶矩

15、M2的大小及连杆AB所受的力。 解 求连杆AB受力(1)取曲柄OA画受力图如图所示。连杆AB为二力杆。(2)列平衡方程: Mi0, M1FABOAsin300(3)求解未知量。 将已知条件M1=1Nm,OA=0.4m,代入平衡方程,解得:FAB5N;AB杆受拉。求力偶矩M2的大小(1)取铰链四连杆机构OABO1画受力图如图所示。FO和FO1构成力偶。(2)列平衡方程: Mi0, M1M2FO(O1BOAsin30)0(3)求解未知量。将已知条件M1=1Nm,OA=0.4m,O1B=0.6m代入平衡方程,解得:M23Nm17. 上料小车如图所示。车和料共重G=240kN,C为重心,a=1m,b=

16、1.4m,e=1m,d=1.4m,=55,求钢绳拉力F和轨道A,B的约束反力。解(1)取上料小车画受力图如图所示。(2)建直角坐标系如图,列平衡方程:Fx0,F-Gsin0Fy0,FNA+FNB-Gcos0MC(F)0, -F(de)-FNAa+FNBb0(3)求解未知量。 将已知条件G=240kN,a=1m,b=1.4m,e=1m, d=1.4m,=55代入平衡方程,解得: FNA47.53kN;FNB90.12kN;F196.6kN 18. 厂房立柱的一端用混凝土砂浆固定于杯形基础中,其上受力F=60kN,风荷q=2kN/m,自重G=40kN,a=0.5m,h=10m,试求立柱A端的约束反

17、力。解(1)取厂房立柱画受力图如图所示。A端为固定端支座。(2)建直角坐标系如图,列平衡方程:Fx0, qhFAx0Fy0, FAyGF0MA(F)0, qhh/2FaMA0(3)求解未知量。 将已知条件F=60kN,q=2kN/m,G=40kN,a=0.5m,h=10m代入平衡方程,解得:FAx20kN();FAy100kN();MA130kNm(Q)19. 试求图中梁的支座反力。已知F=6kN。 解(1)取梁AB画受力图如图所示。 (2)建直角坐标系,列平衡方程:Fx0, FAx-Fcos450Fy0,FAy-Fsin45+FNB0MA(F)0, -Fsin452m+FNB6m0(3)求解

18、未知量。 将已知条件F=6kN代入平衡方程。解得: FAx4.24kN();FAy 2.83kN();FNB1.41kN()。20. 试求图示梁的支座反力。已知F=6kN,q=2kN/m。解(1)取梁AB画受力图如图所示。 (2)建直角坐标系,列平衡方程: Fx0, FAx-Fcos300 Fy0, FAy-q1m-Fsin300 MA(F)0, -q1m1.5m-Fsin301m+MA0(3)求解未知量。 将已知条件F=6kN,q=2kN/m代入平衡方程,解得: FAx5.2kN(); FAy5kN(); MA6kNm(Q)。21. 试求图示梁的支座反力。已知q=2kN/m,M=2kNm。

19、解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。 (2)建直角坐标系,列平衡方程: Fy0, FA-q2m+FB0 MA(F)0, -q2m2m+FB3m+M0(3)求解未知量。将已知条件q=2kN/m,M=2kNm代入平衡方程,解得: FA2kN();FB2kN()。22.试求图示梁的支座反力。已知q=2kN/m,l=2m,a=1m。 解(1)取梁AB画受力图如图所示。 (2)建直角坐标系,列平衡方程: Fx0, FAx-qa0 Fy0, FAy0 MA(F)0, -qa0.5a+MA0(3)求解未知量。 将已知条件q=2kN/m,M=2kNm,a=1m代入平衡方程,解

20、得: FAx2kN();FAy0; MA1kNm(Q)。23. 试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kNm,a=1m。解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。 (2)建直角坐标系,列平衡方程: Fy0, FA-qaFB-F0 MA(F)0, qa0.5a+FB2a-M-F3a0(3)求解未知量。将已知条件F=6kN,q=2kN/m,M=2kNm,a=1m代入平衡方程,解得: FA-1.5kN();FB9.5kN()。24. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。 解(1)取梁AB画受力图如图所示。 (2)建直角坐标系

21、,列平衡方程: Fx0, FAFBx0 Fy0, FByF0 MB(F)0, -FAa+Fa+M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m代入平衡方程,解得: FA8kN();FBx8kN();FBy6kN()。25. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系如图,列平衡方程: Fx0, FAx-FBsin300 Fy0, FAy-F+FBcos300 MA(F)0, -Fa-FBsin30a+FBcos302a+M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m代入平衡方程,解得:

22、FB3.25kN();FAx1.63kN();FAy3.19kN().26. 试求图示梁的支座反力。已知F=6kN,a=1m。 解:求解顺序:先解CD部分再解AC部分。解CD 部分(1)取梁CD画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FC-F+FD0 MC(F)0, -FaFD2a0(3)求解未知量。将已知条件F=6kN代入平衡方程, 解得: FC3kN;FD3kN()解AC部分 (1)取梁AC画受力图如图所示。(2)建直角坐标系,列平衡方程:Fy0, -F/C-FAFB0 MA(F)0, -F/C2aFBa0(3)求解未知量。将已知条件F/C =FC=3kN代入平衡方程

23、,解得:FB6kN();FA3kN()。梁支座A,B,D的反力为: FA3kN();FB6kN();FD3kN()。27. 试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kNm,a=1m。 解:求解顺序:先解CD部分再解ABC部分。 解CD部分(1)取梁CD画受力图如上左图所示。(2)建直角坐标系,列平衡方程:Fy0, FC-qa+FD0MC(F)0, -qa0.5a +FDa0(3)求解未知量。 将已知条件q=2kN/m,a=1m代入平衡方程。解得:FC1kN;FD1kN()解ABC部分(1)取梁ABC画受力图如上右图所示。(2)建直角坐标系,列平衡方程:Fy0, -F/C+F

24、A+FB-F0MA(F)0, -F/C2a+FBa-Fa-M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m,F/C = FC=1kN代入平衡方程。解得: FB10kN();FA-3kN()梁支座A,B,D的反力为:FA-3kN();FB10kN();FD1kN()。28.试求图示梁的支座反力。 解:求解顺序:先解IJ部分,再解CD部分,最后解ABC部分。解IJ部分:(1)取IJ部分画受力图如 右图所示。(2)建直角坐标系,列平衡方程: Fy0, FI-50kN-10kN+FJ0 MI(F)0, -50kN1m-10kN5m+FJ2m0(3)求解未知量。 解得: FI10kN;

25、 FJ50kN解CD部分:(1)取梁CD画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FC-F/J+FD0 MC(F)0,-F/J1m+FD8m0(3)求解未知量。 将已知条件F/J = FJ=50kN代入平衡方程。解得:FC43.75kN;FD6.25kN()解ABC部分:(1)取梁ABC画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, -F/C-F/I-FA+FB0 MA(F)0,-F/C8m+FB4m-F/I 7m0(3)求解未知量。 将已知条件F/I = FI=10kN,F/C = FC=43.75kN代入平衡方程。解得: FB105kN();FA51.25

26、kN()梁支座A,B,D的反力为:FA51.25kN();FB105kN();FD6.25kN()。29.试求图示梁的支座反力。已知q=2kN/m,a=1m。 解:求解顺序:先解BC段,再解AB段。 BC段 AB段1、解BC段(1)取梁BC画受力图如上左图所示。(2)建直角坐标系,列平衡方程: Fy=0, FC-qa+FB=0 MB(F)=0, -qa0.5a +FC2a=0(3)求解未知量。 将已知条件q=2kN/m,a=1m代入平衡方程。解得: FC=0.5kN();FB=1.5kN2、解AB段(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FA-qa-F/B

27、=0 MA(F)=0, -qa1.5aMA-F/B2a=0(3)求解未知量。将已知条件q=2kN/m,M=2kNm,a=1m,F/B=FB=1.5kN代入平衡方程,解得: FA=3.5kN();MA=6kNm(Q)。梁支座A,C的反力为: FA=3.5kN();MA=6kNm(Q);FC=0.5kN()30. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。 解:求解顺序:先解AB部分,再解BC部分。 1、解AB部分(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FA-F+FB=0 MA(F)=0,-Fa+FB a=0(3)求解未知量。 将已知条件F

28、=6kN,a=1m代入平衡方程。解得:FA=0;FB=6kN2、解BC部分(1)取梁BC画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FC-F/B=0 MC(F)=0, F/B2aMMC=0(3)求解未知量。将已知条件M=2kNm,a=1m,F/B=FB=6kN代入平衡方程。解得:FC=6kN();MC=14kNm(P)。梁支座A,C的反力为:FA=0;MC=14kNm(P);FC=6kN()31. 水塔固定在支架A,B,C,D上,如图所示。水塔总重力G=160kN,风载q=16kN/m。为保证水塔平衡,试求A,B间的最小距离。 解(1)取水塔和支架画受力图如图所示。当AB间

29、为最小距离时,处于临界平衡,FA=0。 (2)建直角坐标系,列平衡方程: MB(F)0, -q6m21m+G0.5lmin0(3)求解未知量。将已知条件G=160kN,q=16kN/m代入平衡方程,解得:lmin2.52m32. 图示汽车起重机车体重力G1=26kN,吊臂重力G2=4.5kN,起重机旋转和固定部分重力G3=31kN。设吊臂在起重机对称面内,试求汽车的最大起重量G。 解:(1)取汽车起重机画受力图如图所示。当汽车起吊最大重量G时,处于临界平衡,FNA=0。 (2)建直角坐标系,列平衡方程:MB(F)=0, -G22.5m+Gmax5.5m+G12m=0(3)求解未知量。将已知条件

30、G1=26kN,G2=4.5kN代入平衡方程,解得:Gmax=7.41kN33. 汽车地秤如图所示,BCE为整体台面,杠杆AOB可绕O轴转动,B,C,D三点均为光滑铰链连接,已知砝码重G1,尺寸l,a。不计其他构件自重,试求汽车自重G2。 解:(1)分别取BCE和AOB画受力图如图所示。(2)建直角坐标系,列平衡方程:对BCE列Fy0, FByG20对AOB列MO(F)0, F/ByaFl0(3)求解未知量。将已知条件FBy=F/By,F=G1代入平衡方程,解得:G2lG1/a34. 驱动力偶矩M使锯床转盘旋转,并通过连杆AB带动锯弓往复运动,如图所示。设锯条的切削阻力F=5kN,试求驱动力偶

31、矩及O,C,D三处的约束力。 解:求解顺序:先解锯弓,再解锯床转盘。 1、解锯弓(1)取梁锯弓画受力图如图所示。(2)建直角坐标系,列平衡方程: FX=0,F-FBAcos15=0 Fy=0, FD+FBAsin15-FC=0 MB(F)=0, -FC0.1m+FD0.25m+F0.1m=0(3)求解未知量。 将已知条件F=5kN代入平衡方程。解得: FBA=5.18kNFD=-2.44kN()FC=-1.18kN()2、解锯床转盘(1)取锯床转盘画受力图如图所示。(2)建直角坐标系,列平衡方程: FX=0, FABcos15-FOX=0 Fy=0, FOy-FABsin15=0 MO(F)=

32、0, -FABcos150.1m+M=0(3)求解未知量。将已知条件FAB=FBA=5.18kN代入平衡方程,解得 :FOX=5kN()FOy=1.34kN()M=500Nm(Q)35. 图示为小型推料机的简图。电机转动曲柄OA,靠连杆AB使推料板O1C绕轴O1转动,便把料推到运输机上。已知装有销钉A的圆盘重G1=200N,均质杆AB重G2=300N,推料板O1C重G=600N。设料作用于推料板O1C上B点的力F=1000N,且与板垂直,OA=0.2m,AB=2m,O1B=0.4m,=45。若在图示位置机构处于平衡,求作用于曲柄OA上之力偶矩M的大小。 解:(1)分别取电机O,连杆AB,推料板

33、O1C画受力图如图所示。 (2)取连杆AB为研究对象 MA(F)0, -F/By2m-G21m0 MB(F)0, -FAy2m+G21m0 Fx0, FAx-F/Bx0将已知条件G2=300N代入平衡方程,解得:FAy=150N;F/By=150N;FAxF/Bx(3)取推料板O1C为研究对象MO1(F)0, -FBx0.4msin+G0.4mcos-FBy0.4mcos+F0.4m0将已知条件G=600N,=45,F=1000N,F/ByFBy-150N代入平衡方程,解得: FBx=2164N FAxF/Bx2164N(4)取电机O为研究对象 MO(F)0, -F/Ax0.2mcos+F/A

34、y0.2msin+M0将已知条件FAxF/Ax2164N,FAyF/Ay150N,=45代入平衡方程,解得:M285Nm。36. 梯子AB重力为G=200N,靠在光滑墙上,梯子的长l=3m,已知梯子与地面间的静摩擦因素为0.25,今有一重力为650N的人沿梯子向上爬,若=60,求人能够达到的最大高度。 解: 设能够达到的最大高度为h,此时梯子与地面间的摩擦力为最大静摩擦力。(1)取梯子画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FNBGG人0 MA(F)0,-G0.5lcos-G人(l-h/sin)cos-Ffmlsin+FNBlcos0FfmfS FNB(3)求解未知量。

35、将已知条件G=200N,l=3m,fS0.25,G人650N,=60代入平衡方程。解得:h=1.07mm37. 砖夹宽280mm,爪AHB和BCED在B点处铰接,尺寸如图所示。被提起的砖重力为G,提举力F作用在砖夹中心线上。若砖夹与砖之间的静摩擦因素fS=0.5,则尺寸b应为多大,才能保证砖夹住不滑掉? 解:由砖的受力图与平衡要求可知:F fm0.5G0.5F;FNAFNB至少要等于Ffm/fsFG再取AHB讨论,受力图如图所示: 要保证砖夹住不滑掉,图中各力对B点逆时针的矩必须大于各力对B点顺时针的矩。 即:F0.04mF/ fm0.1mF/NAb代入F fmF/ fm0.5G0.5F;FN

36、AF/NAFG可以解得:b0.09m9cm38. 有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F1的大小。 解:(1)取圆轮、制动装置画受力图如图所示。(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(F)0, -Ffmr+M0 FfmfS FN 解得FfmM/r; FNM/rfS取制动装置列平衡方程: MA(F)0, -F1b-F/fmc+F/ Na0解得: 39. 有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F2的大小。解:(1)取圆轮、制动装置画受力图如图所示。(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(F)0, -Ffmr+M0 FfmfS FN 解得FfmM/r; FNM/rfS取制动装置列平衡方程:MA(F)0, -F2b+F/ Na0 解得: 40.有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F3的大小。 解:(1)取圆轮、制动装置画受力图如图所示。(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服